g Alr)w-AZSG 358
‘ !

T
CONSORTIUM, INC.
. TESTING AND EVALUATING C’I SYSTEMS
THAT EMPLOY Al
(CLIN 0001)

VOLUME 1: HANDBOOK FOR TESTING EXPERT SYSTEMS

Leonard Adelman, Jacob W. Ulvila, and Paul E. Lehner -\

Decision Science Consortium, Inc. ‘
1895 Preston White Drive, Suite 300 D

Reston, Virginia 22091

TLECTE
January 1991 E
. Final Report L

Period of Performance: 16 September 1988 - 15 September 1990
Contract Number: DAEA18-88-C-0028 ~
PR&C Number: W61DD3-8057-0601
AAP Number: EPG 8048

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for:
U.S. Army Electronic Proving Ground
ATTN: STEEP-ET-S (Mr. Robert J. Harder)
Fort Huachuca, Arizona 85613-7110

The views, opinions, and/or findings contained in this report are those of the authors and should not be
construed as an official Department of the Army position, policy, or decision uniess so designated by other
documentation.

. | \ TECHNICAL REPORT 90-9 !93_ 14576
RV ey ¢ LT

UNCLASSIFIED
] 1 13 PA

REPORT DOCUMENTATION PAGE

Faorm Approved
OMS8 Np. 07040188

REPORY SECURITY CLASSIFICATION
Unclassified

1h. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

unlimited

1 DISTRBUTION AVAILABILITY OF REPORT

Approved tor public release; distribution

4. PERFGRMING ORGANIZATION REPORT NUMBER(S)
90-9

5. MONITORING ORGANIZATION REPORT KUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
Decision Science Consortium, (if appiicable)
Inc.

STEEP-ET-S§

78. NAME OF MONITORING GRGANIZATION
US Army Electrenic Proving Cround

6¢c. ADORESS (City, State, and ZIP Coce}

1895 Preston White Drive, Suite 300
Reston, Virginia 22091

7. ADORESS (City, State, and ZiP Code)

Ft. Huachuca, Arizona 85613-7110

82. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (If applicable)
STEEP-ET-S

DAEA~18-88-C-0028

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO

WORK UNIT
ACCESSION NO

V1. TITLE (inciude Securrty Classification}

TESTING AND EVALUATING C31 SYSTEMS THAT EMPLOY AI -~
VOLUME l: HANDBOOK FOR TESTING EXPERT SYSTEMS

. PERSONAL AUTHOR(S)

Leonard Adelman, Jacob W. Ulvila, and Paul &. Lehner

13a. TYPE OF REPORT 13b. TIME COVERED

Final Technical rrom Sep 88 1o Sep 90

14. DATE QF REPORT (Year, Month, Day)
1991 January 31

15. PAGE COUNT
334

6. SUPPLEMENTARY NOTATION The views, opinions, and/or findings ccntained in this report are
those of the authors and should not be construed as an official Department of the Army
ed by o Ltation,

position, policy, or decision unless so desi

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse f necessary and :dentfy by block number)

FIELD GROUP SUB-GROUP

Expert Systems, Testing, rknowledge-Based Svstems, Artificial
Intelligence, Multiattribute Utility

9. ABSTRACT (Continue on reverse if necessary and identify by biock number)

This is the first and main volume of a five-volume report on this project to develop
methods for testing expert systems. This volume provides a software tester with a
comprehensive method for testing expert systems and knowledge-based systems. It contains
chapters on an overview of expert system testing, foundations for testing expert systems,
subjective methods, technical methods, empirical methods, an integrative framework for
testing and evaluation, the relationship between this framework and other approaches to
testing, and future directions. It also contains a detailed questionnaire that can

be used to elicit subjective information from subjects and an extensive list of referencoes.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

@ unciassirieounumTEdD T same as RPT {2 OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

28. NAME OF RESPONSIBLE INDIVIDUAL
Mr. Robert J. Harder

(602) 538-2090

22b TELEPHONE (Include Area Code) | 22¢.

OFFICE SYMBOL
STEEP-ET-S

DO Farm 1473, (UN 86

Previous editions are obsolete.

__ SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

PREFACE

This report describes the results of a research project funded under the
Small Business Innovative Research (SBIR) program by the U.S. Army Electronic
Proving Ground. Phase 1 of this project was conducted from September 1986 to
March 1987. It resulted in a report and a prototype software program, TESTER.
Phase 2 was conducted from September 1988 to September 1990 and resulted in a
five-volume report and a software prototype, TESTER_C. Voluwe 1 of the report
Handbook for Testing Expert Systems, provides a comprehensive approach to
testing expert systems. Volume 2, Compendium of Lessons Learned from Testing
Al Systems in the Army, provides the results of a survey of software testers
and offers suggestions for improving the practice of testing Al software.
Yolume 3, A Guide to Developing Small Expert Systems, provides a step-by-step
guide for a beginner. Volume 3 was also delivered in a hypertext version.
Volume 4, Published Articles, contains copies of the six published articles
developed in this project. Volume 5, User’s Manual for TESTER C, is a user's
manual for the prototype software that implements the multiattribute utility
analysis (MAUA) framework for testing and evaluating expert systems described

in Volume 1.

Volume 1 is intended as a handbook that can be used by a tester inter-
ested in testing a knowledge-based system or an expert system. The reader
interested in an overview of our methods may wish to skim Chapter 7, "Pulling
It All Together," first. He or she may then wish to review the attributes in
the MAUA hierarchy presented in the latter half of Chapter 3, "Proposed MAUA
Framework for Testing and Evaluating Expert Systems.” A detailed example of
the method is given in Volume 5, User’s Manual for TESTER C. After this
introductory review, a tester should read Chapters 1 and 2 to gain an overview
of the expert system testing methods. The reader may then wish to pick and
choose among the specific methods described in Chapters 3, 4, 5, and 6 to gain
more in-depth knowledge of the techniques needed for the particular test.
Chapter 8 contrasts the methods of this Handbook with other approaches to
software testing and evaluation. Finally, Chapter 9 describes areas where

further research and development are needed.

iii

As with many monographs on software, this one mentions certain products. .
EXSYS is a trademark of Exsys, Inc. CLIPS is a product of NASA. Other
product names used in thils document may be trademarks of their respective

companies.

iv

CHAPTER

1:

CONTENTS

TESTING AND EVALUATING EXPERT SYSTEMS:
AN OVERVIEW AND ILLUSTRATION

A DECISION-MAKING PERSPECTIVE AND PARADIGM
A MULTI -FACETED TEST AND EVALUATION APPROACH
THE CASE STUDY

Technical Evaluation

Empirical Evaluation

Subjective Evaluation
CHAPTER SUMMARY .

LAYING THE FOUNDATION: TEST AND EVALUATION
CRITERIA, THE EXPERT SYSTEM DEVELOPMENT CYCLE,
AND AN OVERVIEW OF SUBJECTIVE, TECHNICAL, AND
EMPIRICAL TEST AND EVALUATION METHODS .

TEST AND EVALUATION CRITERIA
THE EXPERT SYSTEM DEVELOPMENT APPROACH
SUBJECTIVE, TECHNICAL, AND EMPIRICAL TEST AND
EVALUATION METHODS: AN OVERVIEW
Subjective Test and Evaluation Mechods
Multiattribute Utility Assessment
The Dollar-Equivalent Technique
Decision Tree Analysis .
Other Subjective Test and Evaluacion
Methods
Discussion .
Technical Test and Evaluation Methods
Logical Consistency and Completeness
Functional Completeness and Predictive
Accuracy . .
Service Requirements
DPiscussion .
Empirical Test and Evaluation Methods
Experiments
Quasi-Experiments
CHAPTER SUMMARY

MORE ABOUT SUBJECTIVE TEST AND EVALUATION METHODS

MULTIATTRIBUTE UTILITY ASSESSMENT (MAUA) .
COST-BENEFIT ANALYSIS AND THE DOLLAR-EQUIVALENT
TECHNIQUE . . e e e e e e .
DECISION TREE ANALYSIS

MAUA-BASED COST-BENEFIT ANALYSIS

Page

1-1

1-7
1-14
1-20
1-22
1-24
1-30
1-34

3-1
3-3
3-13

3-16
3-22

CONTENTS {(Continued)

CONSTRUCTING QUESTIONNAIRES TQ ELICIT OPINIONS
Characteristics of the DART Questionnaire
Reliability and Validity of the DART
Questionnaire .

Assessing the Reliahility of the DART
Questionnaire

Assessing the Validity of the DART
Questionnaire ..
Other Types of Questionnaires

Summary

PROPOSED MAUA FRAMEWORK FOR TESTING AND EVALUATING

EXPERT SYSTEMS .
Framework and Attribute Definitions
Measurement Scales for Attributes
Judgmental Performance and the Rest of
Usability
Using the Hierarchy for Tescing

CHAPTER SUMMARY . e e e

MORE ABOUT TECHNICAL TEST AND EVALUATION METHODS

TESTING AND EVALUATING THE KNOWLEDGE BASE .
Methods for Evaluating Logical Consistency
and Completeness

Static Testing for Categorical Expert
Systems

Static Testing for Systems with Reason

Maintenance

Static Testing for Uncertain Inference

Systems
A Dynamic Testing Approach Validator
Summary . . .
Methods for Evaluating Funccional
Completeness and Predictive Accuracy
Examining the Knowledge Base
Using Test Cases
Summary
INFERENCE ENGINE
SERVICE REQUIREMENTS
CHAPTER SUMMARY .

MORE ON ASSESSING THE PREDICTIVE ACCURACY OF AN
EXPERT SYSTEM’S XKNOWLEDGE BASE
CASE 1: HYPOTHESIS TESTING WITH BELIEF VALUES

Possible Performance Measures
Estimating P. and Py

vi

w U
$ 1
[BN S

CONTENTS (Continued)

Using Py and Py to Determine Sample Size
An Example .
Reconsidering the Assumptions
Multiple Hypotheses .
Belief Values that do not Sum to One
Unequal Variance
Nonsymmetric Thresholds
Distributions are Normal
Some Non-Parametric Procedures
Estimating d*
CASE 2: HYPOTHESIS TESTING WITHOUT BELIEF VALUES
CASE 3: ASSESSING THE ACCURACY OF QUANTITATIVE
PREDICTIONS . Coe
CASE 4: COMPARISON TO EXPERT JUDGMENT
SOME OTHER APPROACHES .

MORE ABOUT EMPIRICAL TEST AND EVALUATION METHODS

EXPERIMENTS . ..
Reliabilicy and Valxdity Broadly Defined
Internal Validity . A
Construct Validity
Statistical Conclusion Valldity
External Validity .
Field Experiments .
CASE STUDIES AND QUASI- EXPERIMENTS
Pre-Experimental Designs
Appropriate Case Studies
Time-Series Designs
Nonequivalent Control Group De51gn
CHAPTER SUMMARY .

PULLING IT TOGETHER .

WEIGHTING DIFFERENT PARTS OF THE HIERARCHY
Mission Critical System
Automatic System
Expertise of the User
Assist an Expert
Assist a Novice
Widely Distributed
PERFORMING THE TESTS
Knowledge-Base Struccure .
Factors Affecting the Ability to Test
Testing for Logical Consistency
Testing for Logical Completeness

vii

~J

Page

w0
P
o ~J

5.13

5-13
5-14
5-14
5-15
5-15
5-16
5-17
5-18

5-20
5-22
5-25

[}
L
[

L= ANK ~A TN =5}
'

[+ 3K <20 e AN« N« J= S W AR o AR AR <}
.
W N R NN A e e

' 1 v +

S WO AN W R S 0D BN 0D 00

~
0
P

4 + . 1

] ’ [

SN SNIN N SN SN N N N N N
'

— . [
[IRV SRV IRV JRV. B - RV (e AN YA ol

CONTENTS (Continued)

Knowledge-Base Content
Factors Affecting the Ability to Test
Testing for Functional Completeness
Testing for Predictive Accuracy

Inference Engine

"Service"

Factors Affecting the Abxlity to Test

Testing for Service Requirements
Performance

Factors Affecting the Ability to Tesc

Testing for Performance
Usability

Factors Affeccing the Abilicy to Test

Testing for Usability
CHAPTER SUMMARY . . e

8: OTHER APPROACHES TO TEST AND EVALUATION .
VERIFICATION VERSUS VALIDATION
STATIC VERSUS DYNAMIC TESTING .
SOFTWARE QUALITY FACTORS
CHAPTER SUMMARY .

9: FUTURE DIRECTIONS .
TEST TECHNOLOGY PROGRAM .

SPECIFIC ACTIONS
CHAPTER SUMMARY .

REFERENCES

APPENDIX: QUESTIONNAIRES

viii

Page

7-11
7-11
7-12
7-112
7-14
7-15
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-17
7-18

A-1

TABLE

FIGURE

1-1:
1-2:

1-3:

CONTENTS (Continued)

TABLES

Hiererchy of Measures of Effectiveness (MOEs) and
Number of Questions Assessing Bottom-Level MOEs
The Experts' Quality Ratings for their Solutions
with and without DART .
Experts’ Mean Quality Ratings and Sample Size for
the 2 (DSS) X 2 (Scenario) for the Experts’
Solutions e e e e e e
Experts’ Subjective Evaluation Scores for DART
on each MOE in the MAUA Hierarchy

A MAU Framework for Integrating Test aad
Evaluation Criteria .
A Simple Payoff Matrix
Sample Test Results .
Tradeoff between P; and Pg in Sample Problem
Test Results for all Nodes in Sample Problem
(max Pg set at .05) .
Sample Data for Expert System Predicting
Quantitative Values
Twenty Judgments from Three Experts aad Expert
Systems
Intercorrelation of Columns in Table 5 5
Some Summary Comments about Experiments
Definitions of (Selected) Threats to Internal
Validity . .
A Summary of Issues Involved 1n the Discussion
of Statistical Conclusion Validity .
Definitions of Empirical Evaluation Methods
Definitions of Reliability and Valiaity
Linking Software Quality Subfactors to
Attributes in the Hi~rarchy

FIGURES

The SHOR Faradigm .

The Three Interfaces to Monitor and Evaluate

when Developing Expert Systems

DART Functional Overview

Hice et al.’'s System Development Methodology
Cholawsky’s (1988) Representation of the
Traditional Expert System Development Methodology
Harmon et al.‘s (1988) Representation of the
Traditional Expert System Development Methodology
Cholawsky's (1988) “"New" Approach to Expert S}stem
Developmento .o

ix

Page

1-16

1-28

1-29
1-35

2-5

3-18

5-10
5-11

5-12

6-11
6-17
6-37
6-38

8-4

1-9
1-17
1-23

2-9
2-12
2-13

2-15

FIGURE

2-5:

[V VA
'
O

CONTENTS (Continued)

FIGURES

Weitzel and Kerschberg’'s (1989) Representation
of the "Knowledge-Base System Development
Methodology Flow"

Rook and Croghan’s \1989) "Knowledge Acquisition

Activity Matrix”

Andriole’s Nine-Step Prototyplng Deslgn Blueprint
Wolfgram et al.'s (1987) "Stages of Expert System

Development

Modification of WOlfgram ec aL 's Represencation
in Order to Emphasize Test and Evaluation

Some Possible Shape Utility Functions
Hypothetical Utility Function for Expert System
Set-Up Time .. .
Possible Discrete Utility Functions .

A Pictorial Representation of the Relative
Importance of Different Utility Scales

A Highly Simplified Probability Tree for
Illustrating the Uncertainty i{in Funding for

an Expert System throughout the Duration of

the Development Process .
A Slightly Expanded Probability Tree for the
Hypothetical Funding Illustration

A Hypothetical Efficient Frontier

An Example of a Questionnaire for Obtaining
Utility Scores

A MAU Framework for Testing and Evaluating
Expert Systems .

The Flow Graph for a Fragment of a Fict‘tious
Rule Base for Diabetes Diagnosis

An Incident Matrix Representing the Flow Graph
for the Fictitious Diabetes Diagnosis Rule Base
A Truth Table Representing a Fragment cf the
Fictitious Rule Base for Diabetes Diagnosis
Hypothetical Distribution of Perceived Signal
Strength in Signal Detection Theory
Distributions of Belief Value, bel{H1) for
Hl-true vs. H2-false e

Samnle Inference Network .

Sample Data for Calculating d* e
Plot of Predictions, Outcomes, and Regression
Line for Table 5-4 .

Comparison of Expert System and Average Fapert
Judgment .

Evaluation Criteria being Assessed by Empirical
Test and Evaluation Method . .
A MAU Framework for Testing and Evaluating
Expert Systems .

Page

FIGURE

8-1:

[l
o

CONTENTS (Continued)

FIGURES

Test and Evaluation Criteria Addressing
Verification (Shaded) versus Validation
(Unshaded) Methods .

Test and Eveluation Criteria Typically
Assessed by Static Testing Methods (Shaded)
and Dynamic Testing Methods (Unshaded)
Software Quality Factors

Factor to Subfactor Decomposition in

Matrix Form

Software Quality Subfactors .

fhe Software Quality Subfactors Addressed
by each Evaluation Attribute in the Hierarchy
Relationship between the Questionnaire and
the MAU Framework for Testing and Evaluating
Expert Systems

xi

Page

CHAPTER 1:

TESTING AND EVALUATING EXPERT SYSTEMS:
AN OVERVIEW AND ILLUSTRATICN

The test and evaluation of expert systems is becoming increasingly
important, for expert systems are moving out of the laboratery and into
operational use. How good are these systems? Do they do what thelr devel-
opers claim? Do they meet the users’ requirements? Are their knowledge bases
reliable and valid? Do they actually improve operator (and organizational)
performance? Can they be effectivelv integrated with and maintained among
more conventional software systems? Test and evaluation methods provide a
means of answering these and many other questions for the user community.

More generally, test and evaluation provides the feedback required for keeping
the expert system development process on track and, thereby, increasing the

probability that the expert system will be used and effective.

Expert system technology holds great promise for many reasons. First,
the financial cost to build expert systems has gone down. Expert system
software (e.g., shells) is now much more affordable than it was just five
years ago. Moreover, many shells are now available on personal computers,
thereby decreasing the implementation costs and problems that existed when one
needed expensive, expert system hardware. In addition, we now have a wuch
better idea of how to buiid expert systems. Our experience in building expert
systems has gone up significantly in a very short time. [Note that we use the
term “"expert system" generally, to include all classes of knowledge-based

systems.]

Second, we have some clear commercial successes to point to; successes
other than MYCIN, PROSPECTOR, XCON, or other pioneering systems. To il-
lustrate this point, we can point to expert systems actually helping to (1)
process loan applications for Citibank (Keyes, 1989), (2) monitor the safety
of mines in the J.S. and other countries, (Newquist, 1988), (3) process
insurance claims for Blue Cross/Blue Shield of South Carolina (Weitzel and
Kerschberg, 1989), (4) dlagnose functional problems with robots at Ford Motor
Cospany (Smith, 1988), {(5) monitor the performance of on-line networks at

Sumitomo Metal Industries of Japan (Newquist, 1988), etc.

1-1

Third, indications are that expert systems have barely impacted their .
potential market. To quote Wolfgram et al. (1987, p. 21), "Many industry
analysts estimate that currently only 10% of potrntial expert system applica-
tions are being recognized ...” And even after 1988, which Chapnick (1988, p.
5) indicated "won’t be considered a banner one for Al ..., everyone is still
predicting relatively high compounded growth rates (greater than 30%) through
the mid-1990s." Moreover, this estimate does not appear t: include mass-
market expert systems applications, which combine expert-systems technology
with traditional applications-oriented software for the mass market. Examples
of currently available mass-market expert systems Iinclude AskDan for tax
preparation, SELLSTAR for sales-tracking and advice, Ex-Sample for determining
the appropriate sample size for a research project, and STS/Expert for stocks.
To quote Eliot (1989, p. 9), "Mass-market applications are the future of the

expert-systems industry and will affect applications everywhere."

Although there have been successes, there also have been fallures. In
fact, many expert systems that are developed are simply not used. To quote
Casey (1989, p. 44), "For every success story, however, many expert-system
development projects have failed or are in deep trouble. Many expert systems ‘
end up either ‘dead on arrival’ (never work), among the ranks of the un-
employed (never used), or serving a life sentence in research and development
(never finished)." The Department of Defense, for example, has spent millions
of dollars on expert system technology with minimal transfer to operational
personnel. And private industry has spent millions of dollars developing
expert systems with minimal impact on the size of the workforce these expert

systems were to replace.

The reasons for this state of affairs lie, of course, on both sides of
the fence. As Andricle (1989, p. 7) points out when discussing all forms of
decision support systems technology, "Vendors have vested interests in
overselling, and users are inclined to want to believe that a solution to all
their proble: i can be found on one or two floppy disks."” However, a focus on
motives obscures the bigger issues. For as Andriole (p. 7) points outs, "The
truth of the matter is that the state of the art of decision support systems

technology is unbalanced and evolving."

1-2

These statements are just as true for expert systems technology. What
has been unbalanced i{s that, all the rhetoric to the contrary, expert system
development efforts have until recently been primarily technology-driven.
What is evolving is a more requirements-driven, expert systems developmenc
process. The requirements-driven evolution is, of course, taking many forms.
Three aspects of it are overviewed here. When considering them, the reader

should keep the concept of "balance” in mind.

First, there is a growing realization that the success of an expert
system development effort depends on picking the right problem. To quote
Casey (1989, p. 44), "One simple rule for success that all would-be developers
should repeat out loud each day during morning calisthenics is, ‘Pick the
right problem.’ Just as location is the biggest factor in real estate,
selecting the right problem is absolutely essential to expert system develop-
ment. Unfortunately, the importance of selecting the right application is
often lost in the excitement and enthusiasm accompanying the initial decision
to use expert-system technology." Nor is it an easy problem. Casey has even
built an expert system called ESES (Expert System Expert System) to help in

problem selection,

Second, the users’ needs are an essential aspect of problem selection.
The concern with "picking the right problem™ is, of course, not new. In the
past, however, it has primarily focused on the characteristics of the task and
the experts who would provide the knowledge. Does the task primarily require
symbolic reasoning? Does it require the use of heuristics? Are decisions
based on incomplete and/or uncertain information? 1Is there a knowledge czar
or are there high levels of agreement among experts? Are experts available

over a long period of time?

More recently, the questions have also begun emphasizing the potential
user’'s explicit needs. To quote Smith (1988, p. 53), "In addition, you should
try to choose applications that: Are real. Don't try to solve problems that
don’t exist—you’ll only create systems nobody will use. Fit in with your
organization’s future direction and plans ... Have measurable benefits. Pay
particular attention to such things as cost reductions and improvements in

quality, productivity, and working conditions. However, don’'t overlook

1-3

intangible benefits. These are sometimes referred to as ‘'warm fuzzies,'’ ‘

because even though you can’t quantify them, they are nice to have."

Third, test and evaluation are essential to keeping the expert system
development effort focused on users’ needs. Again, one might say, this isn't
news. After all, isn’t the purpose of prototyping to develop an illustrative
system so that potential users can evaluate it? So that they can make sure

that the final product meets their needs?

Unfortunately, prototyping has not been as successful as we might like
to believe. In an editorial in AI Expert, Chapnick (1988, p. 5) referred to
"{t]he more general problem of the lamentable, unimplementable prototype ..."
And Cholawsky (1988, p. 42) points out that "(t}he inability to wmove from a
prototype effort to an operational, delivered system is a chronic problem for
organizations developing expert systems." In an effort to help cure the
"prototyping blues." she emphasizes the importance of prototype planning that
explicitly identifies objectives and evaluation criteria for determining
prototype success. Nor is she alone. Adelman and Ulvila (in press), Andriole
(1989), and much earlier, Gaschnig et al. (1983) have all argued for the .
importance of specifying explicit test and evaluation criteria early in the
prototype development process in order to keep development on track. Yet a
recent survey by Constantine and Ulvila (in press) has found that such
criteria or, more generally, requirements, are not specified in many (if not

most) expert system development efforts.

Concurrent with the evolution of a more requirements-driven development
process has been the evolution of methods for testing expert systems against
evaluation criteria. The American Association for Artificial Intelligence
(AAAI) held its first workshop on test and evaluation methods in Minneapolis,
MN, in August, 1988. This, the 1989 IJCAI workshop, and the 1990 AAAI
workshop focused primarily on methods for assessing the logical consistency
and completeness of the knowledge base (AAAI Workshop Proceedings, 1988;
IJCAI-89 Workshop Proceedings, 1989). There is a growing awareness, however,
that testing and evaluation is multi-faceted. As experience in software
testing (e.g., see Beizer, 1984; Hamlet, 1988) has shown, no single method {is
completely adequate. 1In the case of expert systems, one must also consider ‘

1-4

methods for assessing (1) the subjective opiuion of users (e.g., Adelman and
Donnell, 1986; Klein and Brezovic, 1988; Ulvila et al., 1987); (2) the
predictive accuracy of the knowledge base (e.g., see Lehner, 1989; Lehner and
Ulvila, 1989; O’'Keefe et al., 1987); and (3) the overall performance of the
organization using the system (e.g., Adelman, 1990a,b; Adelman and Ulvila, in

press).

The purpose of this book is to show one how to perform formal tests and
evaluations of expert system technology. It is a methods bock. The goal is
to provide one with an understanding of the procedures required to perform
effective tests and evaluations, and how to incorporate these procedures into
the expert system development process. Moreover, to the extent possible, this
book provides illustrative examples of how to utilize formal test and evalua-
tion procedures to help readers to apply these procedures to ongoing expert
system developments. In short, the orientation is to provide a step-by-step
description of how to test and evaluate expert systems. This volume is
intended primarily for major expert systems. Volume 3 of this report provides

guidance for small expert systems.

It must be emphasized at the outset, however, that no methods book on
test and evaluation can be a "cookbook" because the focus of test and evalua-
tion is to ensure that the technology being developed is consistent with the
user’'s requirements. Unfortunately, users are often uncertain of exactly what
their decision requirements are, regquirements analysls techniques are more
than fallible, and the procedures for converting requirements analyses to
system functions are still being refined by researchers. As a result, the
development team is faced with numerous judgments and decisions. Indeed, it
is the pervasiveness of these judgments and decisions that make successful

expert system development so difficult.

Broadly speaking, test and evaluation methods are tools for structuring
and making the judgments and decisions ipherent in the system development
process. As such, they represent the control mechanism for finding out what
needs to be done to increase the probability that the expert system will be
used by the decision maker(s) for whom the system is being built and, in turn,

fmprove organizational decision making and performance. Because evaluation

1-5

serves as a control mechanism for the development process, readers also need a
broad framework for considering evaluation issues, as well as specific test
and evaluation methods, in order to keep the development process on track.
This book will provide readers with such a framework. Moreover, the book wili
show readers how the broad framework and specific methods can be integrated

into the development process.

Thus far, we have not distinguished between "test"” and "evaluation." We
will do so here. Specifically, we will use the term "test" to refer to the
process of measuring the expert system’'s performance against specific cri-
teria. These criteria are generally referred to as "measures of effective-
ness" (MOEs). The measurement approach may be (1) logically-based, such as
testing the logical consistency of the rules in the knowledge base; (2)
empirically-based, such as testing the predictive accuracy of the knowledge
base against the judgmental accuracy of experts or ground-truth measures of
accuracy; (3) observationally-based, such as recording the features of the
expert system that users routinely use when solving test cases; or (4)
subjectively-based, such as using questionnaires to assess users’ opinions of

the system’'s strengths and weakness.

We will use the term "evaluation” to refer to the process of aggreiating
all the different tests in order to reach an overall conclusion about the
expert system. Central to the concept of "evaluation" is the concept of
"relative importance weights,” or alternative decision rules, for combining
good test scores on some MOEs with bad test scores on others. Relative
importance weights represent personal judgments. We will argue from the
outset that such judgments should be made by the decision makers, or their
representatives, who are sponsoring the development of the expert system——not
by the testers. This initially might be disturbing to, and difficult for,
members of the sponsoring, development, and evaluation teams, for it em-
phasizes the subjective process decision makers go through when evaluating the
overall value of an expert system. However, it is quite consistent with a
requirements-driven development approach. Moreover, to quote Riedel and Pitz
(1986, pp. 987-988), "There is no way to avoid the fact that the overall MOZ
must be based on such judgments, or the fact that no mechanical procedure can

replace this subjective assessment ..."

1-6

The remsinder of the first chapter is divided inte three sections. The
first section presents a decision-making perspective and paradigm as a
backdrop for considering the decision to develop an expert system, and the
role of test and evaluation with respect to this decision. The second section
overviews a multi-faceted, test and evaluation approach for providing the
range of information required by the organization building the experc system.
The third section provides a case study showing how this approach can provide

this information and, thereby, enhance prototype development.

A DECISION-MAKING PERSPECTIVE AND PARADIGM

When testing and evaluating expert systems, it is important to remember
the obvious, which is that the overall aim of an expert system is to improve
the effectiveness of the organization using i{t. Improved organizational
effectiveness can occur in many ways, such as through decreased personnel
costs, greater access to expert knowledge, or improved decision making. The
latter focus will be emphasized throughout this book because of the ever
increasing importance given to effective decision making for the success of

post-industrial organizations (e.g., see Huber, 1986).

Simon (1960) has used three categories to describe decision-making
activities: intelligence, design, and choice. "Intelligence" refers to the
activities inherent in problem identification, definition, and diagnosis. It
is, as Huber (1980) points out, the conscious process of trying to explore the
problem in an effort to find out the current state of affairs, and why it does
not match our desires. "Design" refers to those activities inherent in
generating alternative solutions or options for solving the problem. It
involves "... identifying items or actions that could reduce or eliminate the
difference between the actual situation and the desired situation" (Huber,
1980, p. 15). And "choice" refers to those activities inherent in evaluating
and selecting from the alternatives. It is the action that most people think

of when one makes a decision.
As Huber (1980) and others (e.g., Andriole, 1989; Sage, 1986; Wohl,

1981) have pointed out, decision-making activities are a subset of problem-

solving activities. For example, the first three steps in Huber’'s five-step

1-7

problem-solving paradigm are those activities that require (1) problem
identification, definition, and diagnosis; (2) the generation of alternative
solutions; and (3) evaluation and choice among alternative solutions. These
steps are conceptually identical to Simon's decision-making categories. The
fourth step in Huber’'s paradigm involves those activities inherent in imple-
menting the chosen alternative. The fifth step involves those activities
inherent in reviewing or monitoring the implemented action in an effort ®...to
see that what actually happens is what was intended to happen" (Huber, 1980,
p- 19). If there is a significant mismatch between the actual and desired
state of affairs, we are back to step #1, exploring the problem.

Although it is presented within the context of military tactical
decision making (and aiding), Wohl (1981) has presented a problem-solving
paradigm that explicitly identifies the evaluation functions inherent in
decision making. Figure 1-1 presents Wohl's (1981, p. 625) SHOR (Stimulus-
Hypothesis-Option-Response) paradigm. Intelligence activities are differenti-
ated between the Stimulus and Hypothesis elements of the SHOR paradigm. In
particular, the Stimulus element includes data collection, correlation,
aggregation, and recall activities; it naturally includes many of the activi-
ties also included in Huber’s last problem-solving stage—that of monitoring
the situation. The Hypothesis element is that aspect of Intelligence that
involves creating alternative hypotheses to explain the cause(s) of the
problem, evaluating the adequacy of each hypothesis, and selecting one
hypothesis as the most likely cause of the data.

On the basis of the selected hypothesis, or hypotheses if one cannot
differentiate between hypotheses because of the uncertainty and/or ambiguity
in the data, the decision maker generates alternative options for solving the
problem. As in Simon’s and Huber's paradigms, the Option element in the SHOR
paradigm explicitly differentiates between option creation, evaluation, and
selection activities. Finally, on the basis of the selected option, the
decision maker takes action, which includes the planning, organization, and
execution of a Response to the problem, analogous to the fourth step in

Huber's problem-solving framework.

1-8

OENERIC ELEMENTS | SUNCTIONS REGUIALD | INFORMATION PROCTSSEO
QATHER/OETECT
CAPABILITIES, DOCTRINE,
sTMuUL. % FILTER/CORRELATE PORBITION, VELOCITY,
{DATA, TYPL; MASS, MOMENTUM,
AGQ INERTIA; RELEVANCE AND
\d REAATEDIDLAY TAUSTWGATHINLSE OF DATA
STOREMECALL
CREATE g WHERE AM 17
: WHERE IS THE ENEMY?
uYPOTHESIS A WHAT I3 ME DOYNG?
PEACEPTION EVALUATE S| omcan s rwany
ALTEANATIVES: i Ca | DO Mite 17
" s| amiinsaLance?
*LeCT c| HOWLONGWILL IT YAXSE
al mevo .2
71 nowLomo wiLL 1T TAKE
CREATE e| muto .y
M1 HOm wilt 17 LOOK W
orTIoN 1 - woune
REtwonst WHAY 5 THE MOST
ALTEANATIVES) tvaLuare M1 ronTan? THING TO DO
o RIGHY NOW?
£
stLeet WOW 0O 1 QST 1T DOM
THE AIR TASKING ORDER:
PLAN o
WHAT
REPPONSE HEN
(ACTION) ORGANIZE wMEAE
oW
» “OW MUCH
THE NEAR REALYIME
txacuve MODIFICATIONARDATE]

Figure 1-1: The SHOR Paradigm
(from Wohl, 1981; last column for illustrative purposes only)

As Wohl (1981, p. 626) points out, the "... SHOR paradigm is basically
an extension of the stimulus response (SR) paradigm of classical behaviorist
psychology to provide explicitly for the necessity to deal with two realms of
uncertainty in the decision-making process: (1) information input uncertain-
ty, which creates the need for hypothesis generation and evaluation; and (2)
consequence-of-action uncertainty, which creates the need for option genera-
tion and evaluation." Different elements of the SHOR paradigm become more or
less important depending on where the uncertainty resides. For example,
"Where options are more or less clearly prescribed but input data is of low
quality (e.g., as in military intelligence analysis), a premium is placed upon
creation and testing of hypotheses (e.g., where is the enemy and what is he
deing?). Where input data are of high quality but options are open-ended
(e.g., as in the Cuban missile crisis), a premium is placed upon creation and

analysis of options and their potential consequences (e.g., if we bomb the

1-9

missile sites or if we establish a full-fledged naval blockade, what will the
Russians do ?) ... By contrast, tactical decislon-making in support of
combined air-land operations is generally characterized by both poor auality
input data and open-ended options; hence, there is a much greater need than i-.
other military situations for rapid hypothesis and option processing in the
field" (Wohl, 1981, p. 626).

As Adelman (1987) has pointed out, the SHOR paradigm also is consistent
with more currently popular cognitively oriented paradigms. For example, the
script theory representation by Shank and Abelson (1977), the schema theory
representation by Noble (1989), and the fuzzy set decision rule representation
by Zimmermann and Zysno (1980) all have both situation assessment and action
components. The situation assessment component typically operates via a
‘pattern matching'’ mechanism, which is consistent with the Stimulus and
Hypothesis elements of the SHOR paradigm. Once a script or schema is ac-
tivated, there is a set of actions that is consistent with it; this is

consistent with the Option and Response elements of the SHOR paradigm.

When considering expert system test and evaluation, it is important to
remember that the decision makers who have decided to build an expert system
are in a tactical or strategic decision-making situation, depending on the
forecasting and planning horizon under which they are operating. Moreover,
the situation can be represented by the SHOR paradigm. For, on the basis of
available and projected data, the decision makers are making hypotheses about
the nature of the environment that they and their organization will face in
the future. That is, they are forecasting the future state of affairs and
trying to assess whether their current actions will be effective or not in
achieving their future goals and objectives. And they are generating options
to deal with their hypotheses regarding potential future performance short-
falls. Given all the stimuli about the dynamic nature of future business and
government (particularly military) environments, the ever increasing role that
decision making will play in organizational success, the decreasing financial
cost of computer hardware, and the ever increasing power of computer systems
to support decision making, it is not surprising that decision makers in manv
organizations think that expert system technology will be an effective

response to their hypotheses about the future.

1-10

It is important for us to keep this "big picture” in mind when testing
and evaluating expert svstems. We must remember that hypotheses about the
problem environment and judgments about the relative effectiveness (or
utility) of various options are often made, respectively, under both informa-
tion input and consequence-of-action uncertainty. It is important to realize
that, at the time that it is made, the decision to develop an expert system
i3, in fact, nothing more than a hypothesis that this option will be an
effective response to the problem environment. This may or may not be true.
Other options, either singularly or in combination with the development of an
expert system, may be better options. From this perspective, it can be argued
that the ultimate goal of test and evaluation is to help senior-level decision
makers in an organization decide whether the option of developing an expert
system, either singularly or in combination with other actions, is an effec-
tive organizational response for dealing with the present and/or future

problem environment.

Once the development process is underway, the application of formal test
and evaluation methods permits one to monitor the perceived utility of the
expert system under development and take corrective action to increase the
probability of its use and effectiveness. This can be seen by using the SHOR
paradigm to represent the expert system development process. Specifically,
the development team’s job is to plan, organize, and execute the selected
option, which in this case is the development of a specific expert system.

The purpose of test and evaluation is to systematically gather, filter, and
aggregate data (i.e., stimuli) about the expert system under development in
order to test the hypothesis that all is going well; that is, that the expert
system will do what decision makers and users want it to do and, thereby, be
valuable to them. 1If all is not going well, that is, if there is a problem or
if it is not clear what action to take, then options need to be generated,
evaluated. and selected for correcting the problem(s) so that the development
process can be kept on track. This clearly requires iteration, and is quite

consistent with a requirement-driven prototyping process.
As the above discussion implies, there are two groups of persons that

utilize and, indeed, require the results of formal tests and evaluations. The

first group is the development team. It is composed of user(s), designers,

1-11

knowledge engii 2:ers, domain experts, and programmers. The second group is “he
sponsoring team. If an expert system is being developed only for the use of a
particular decision maker, then he or she is both the user and financial
sponsor of the expert system. However, for many expert system develcpment
efforts, particularly those funded by the federal government, the sponsors and
users of the expert system are distinctly different groups of people. As a
result, "Policy decisions must be made about the system’s design, implementa-
tion, fielding, funding, and incorporation into the organizational function-
ing. These decisions are made by program managers and sponsors and more
general policymakers. The last group is usually interested in more general
information about the aid’'s potential or actual effectiveness" (Riedel and
Pitz, 1986, p. 984).

As Beizer (1984), Hetzel (1984), Riedel and Pitz (1986), and others have
recommended, we will assume that the development team also includes testers
and evaluators whose job is to obtain the test and evaluation data required to
keep the development effort on track. For the simplicity of presentation,
however, we will often use the terms "testers” and "evaluators” interchangeab-
ly. We realize that in many organizations, such as in the U.S. Army for
example, "testers” and "evaluators" are distinctly different groups of trained
individuals who would be found in different organizational units. We will try
to maintain the distinction here too. However, we will at times blur the
distinction to facilitate the presentation of material. We do not feel
uncomfortable in doing so, because, from the perspective of this book, both
"testers” and evaluators should be proficient in obtaining both test and

evaluation data.

The sponsoring and development groups make different types of decisions
during the expert system development process and, consequently, require
different types of information upon which to base those decisions. Ideally,
good tests and evaluations have to be capable of addressing the different
needs of both groups. This requires the application of different test and
evaluation methods, appropriately matched to the information and decision

needs of different persons throughout the development process.

1-12

Unfortunately, it is often not possible o systematically incorporate all
members of the sponsoring group into the enpert system development process.
(In fact, it 1s often difficult to get users to actively parcicipate as
members of the development team, although both research and common sense have
demonstrated the importance of thelr participation to the successful implemen-
tation of all forms of decision support technology.) Numerous reasons are
given for their lack of invo.vement, including busy schedules, a belief in
"hands-off" policy during development, a lack of desire to be involved, a lack
of money, etc. Evaluators need to be conscious of this problem and do what
they can to incorporate members of the sponsoring team into the development
process. Throughout the book we will discuss explicit evaluation methods for
addressing the policymaking decisions about which members of the sponsoring

team need Iinformation.

As the above discussion suggests, many expert system development efforts
do not use explicit evaluation methods to provide a control mechanism for the
development process. Obviously, we think that they should and, we will argue,
that doing so will increase the probability of the successful implementation
and value of the expert svstem. It is important to note that, as Riedel and
Pitz (1986, p. 994) point out, "... user satisfaction with the aid is not a
sufficient criterion for »valuation because of the extraneous factors that can
affect satisfaction." There are numerous other factors, such as the quality
of the decisions made with the expert system, the logical soundness, complece-
ness and predictive accuracy of the knowledge base, the effectiveness of the
match with personnel and organizational characteristics, ete., that go into
making a good expert system. User satisfaction is, however, a necessary
condition for use of the expert system. "... [I]n the final analysis, the
purpose of developing an aid is to have it used, presumiung it to be effective.
Similarly, the purpose of the evaluation is to produce information that is
used. This concern for impact on design or policy decisions is the deter-
minant of what evaluation information to obtain. Yow to obtain that informa-

tion in a valid manner is left to the expertise of the evaluator."”
The evaluator’'s job i{s to select the method(s) that is most appropriate

for the decision maker's questlons, stage of the expert system development

process, available funds, etc. The basic requirement is for an eclectic

1-13

approach that is based on the evaluation purpose and situation. The goal
throughout is to provide guidance in making the judgment. and decisions
inherent in building the expert system. It is for this reascn that evaluation
has been re.erred to as the control mechanism that keeps the development

process on track.

A MULTI-FACETED TEST AND EVALUATION APPROACH

Adelman and Donnell (1986) presented a three-phased (or faceted)
approach for tesuing and evaluating decision support systems; Adelman and
Ulvila (in press) recently extended it to expert systems and showed how it
could be used when selecting classes of test and evaluation methods., The
three-phase evaluatior. approach is composed of a subjective phase for obtain-
ing users’ opinions regarding the system's strengths and weaknesses; a
technical evaluation phase for "looking inside the black box;" and an empiri-
cal evaluation phase for assessing the system’s im} ct on performance.
Specifically, the subjective evaluation phase focuses on evaluating the expert
system from the perspective of potential users. The goal of the subjective
evaluation is to assess whether the users like the expert syscem, what they
consider to be its strengths and weaknesses, and what changes they would

suggest for improving it.

The technical phase focuses on evaluating the expert system from both an
internal (heuristic) perspective and an external (systemic input/output)
perspective. For example, most people considering the technical evaluation of
an expert system might focus on assessing the logical (and functional)
adequacy and predictive accuracy of its krnwledge hase. Rushby (1988) has
called these "competency requirements." However, from a transfer and main-
tenance perspective, one also needs to be concerned with conventional test and
evaluation issues, such as whether the system can be effectively and effi-
ciently Integrated with other software and hardware systems in the operational
environment, and whether it was designed consistent with the organization’s
design and coding standards. Rushby has called thesc¢ concerns "service
requirements.” A comprehensive test and evaluation framework n edr to addres:

both classes of "technical” requirements.

1-14

The empirical evaluation phase focuses on obtaining objective measures
of the system's performance. The goal of the empirical phase is to assess,
for example, whether the system makes proper recommendations and whether
persons make significantly better or faster decisions or use significantly
more information working with, rather than without, the system, and to
identify mechanisms for improving performance. It is important to note that
the potential users of expert system technology may not be experts in the
substantive domain. In these cases, one needs both experts and users to
participate in the evaluation. The experts are needed for the technical
evaluation of the knowledge base; the users for the empirical evaluation of
system performance. If possible, experts should also participate in the
empirical evaluation in order to systematically assess whether system perfor-
mance is a function of user type. In addition, as will be illustrated in the
case study presented later in this chapter, participation of domain experts in
the empii.:al evaluation often provides insight into the functional complete-

ness and predictive accuracy of the knowledge base.

For an evaluation to be effective, the evaluator must decide in advance
what is to be tested. This is done by identifying measures of effectiveness
(MOEs) that are designed to answer the evaluator’'s questions. These questions
depend on who needs the information—that is, whether it is a member of the
development or sponsoring team—the type of information needed, the stage of
the development process, the interface being evaluated, etc. The resulting
MOEs may be either logically-based, empirically-based, observationallv-based
or subjectively-based variables depending on the selected testing method, a
point that will be returned to later in the chapter. The only restrictions
are that each MOE must be measurable and that it provides the required
information. Or to put it differently, the MOE must be correlated (positively
or negatively) with the overall utility of the expert system under develop-

ment.

Table 1-1 presents the hierarchy of subjective MOEs used in the case
study presented later in this chapter. [Note: Chapter 2 presents a hierarchy
of MOEs that (1) is more directed toward supporting the selection of test and
evaluation wmethods, and (2) gives more emphasis to testing and evaluating the

knowledge base.| The MOE hierarchy presented here was developed by Adelman

i-15

[*IYIYNNOILSIND YIASNY-LUOHS ¥V NI SSA 3HL 40 INIWSSISSY ¥04 03ISN SNOTLIS3IND 40 UIBWNN UV SISIHININVL NI SUIBWNN *ILON]

(2) 30N301380)
+SYINVR NOIS1D3Q NO 123443 OV €€
(£) sNais

-SNJS1G NOYD NO 103443 4°€°¢

(2) SNYd

AJN3IONIINDD ONY NOTLVL
~NINI1dW! 4O NOTIVHICISNGD 87
(£) MOILIVWNOINI 30 ¥3Sn L7
(€) SS300ud INIXVH
-NOIS1J30 40 NOILYNIWYX3-3¥ 97
(£) SIALIVNNILIY 40
SIIN3NOISNOD 30 LIN3WSSISSY
(2) SIATIVNY3LTY
40 S3IIN3INOISNOI 3JO INIHOIIA
(2) S3A1LD3re0 10 39NV
(2) SIALLVNYILIV JO JONVY
(Z) LN3WOONT OM]1VHOdHOINI
Y04 AYOMIWYES S0 AL1TVNO
{2) ALI7vND $S300%d zon 133

V\MP\ M m MM

NN‘I\?

£
£
£
g’
e
kS
B
[0
$12310
(L) SIN3W

-34IND3Y 1 SWI1B0Yd ONY HIVON¥ddY
TYIINHIZL «SSC N33ML38 HOLWW

(8) ADVYNIOY NOISID3Q

INIWNOYIANI/NOILVZINYONO 0°€

't
(98

(2) 3INIYA ONINIVNL §£°9°2°2
(2) S301A¥3S
Y3HL0 ¥O JVS O1 INWVA 2°9°2°2
(2) SAaSVL ¥3HI10
ONINY03¥3d NI 3NIVA L9272
$133443 30IS %2

(2) MOT4 NOLLVWNO4NT MO 103443 §°2°2

(2) avon
“J¥0M S,371403d ¥3IHIO 2°272°2
(2) At1Vi8
-¥1d322¥ WIIL1T0d | "2°2°e
NOILVZINVO¥O 3HL NI MOI1ISOd
$137d03d ¥3HIO NO 123443 27272
(2) 3¥N1INYLS ONV STINGII0NL
TYNOILYZINVONO NO (33443 17272
SACLIVY TWNOLLIYZINYOYO HLIIM HOLVMW

AL1isy
- TIVAY J¥VRO¥VRE 2°¢°i°¢
(£) ALl
~T18YIVAY TIXS 12712
(2) SNOILIGNGD 31L1VE 3DVYIAV
J3ICNN ALITISVIIIY G3A133¥34 27172
(2> SIN3M
-3¥In03y dN-13s §£°)1°
(2) INIWIOVNYW VIVG 27|
(g) ININW
~HSITdWODIY XSVYL L°L°L°¢
WL 1712
S¥O1IV4 ADNIID1343

rAr4

1°2

NOL1VYZINVO¥0/SSQ-¥3sn 0°2

(2) 1x31 8°2
(2) SinoiNiyd 2T
(2) SHdv¥D 9°2

(2) sNoig
-¥INJIT¥I J1LvWOLNY S°
(2) sinawoonr
AJ1Q0W OL ALITI8Y
(2) SIN3IWIONr Ld3dX3
(£) s3ats vive
(2) IIV4¥3INT ¥3Sn

-
o~ &N
.
-

. .
-—

2'e’t

.

(2) 3WlL ISNOdS Y
(2> ONINIV3L 3O 3SY3
(£) ONIQNYISHIANN
(%) asn 30 3sv3

v

NNNNWNNNN
-v—u--m.——v-o---

IV3INGD L0278
SOLLST¥31IVYVHD (SSA

() SGI3IN TVNOILVE3do €474
(%) 1SI¥3IN]
7QYOTINEOM/ITALSHION 27171
(£) aNNO¥DIXDVYE
IVIINKIAL/ONINIVEL (L7}
TINNOSH3d HIIM HOLYW

FIVid3LIN] ¥ISN/SSA 074

1-16

FARY

(28

(9) ALITLILN YIVH3AC 0°0

$30N 1era-wonogy bujssossy
suojsany Jo JAqWNN pue (sJOW) SSaUAA|ID3YT Jo SaInseal Jo Ayosesaly :i-4 sjqel

and Donnell (1986) in order to evaluate the adequacy of five different
decision support system prototypes, including three expert systems, developed
to support U.S. Air Force tactical decision making. We use the term “subje-
ctive MOEs” because & questionnaire was used to assess the prototypes’
performance on the MOEs. Consistent with research by Adelman (1982), Huber
(1986), Shycon (1977) and others indicating that evaluators must monitor the
compatibility of decision technology with the characteristics and needs of the
organization, as well as the user, the hierarchy of MOEs is organized to

measure the three interfaces represented pictorially in Figure 1-2.

DECISION-MAKING ORGANIZATION
42

1 %

EXPERT
USER SYSTEM

|

ENVIRONMENT | THREE INTERFACES TO BE EVALUATED

Figure 1-2: The Three Interfaces to Monitor and Evaluate when Developing Expert Systems

The first interface is between the expert system and the user (ES/U).
Here the issue is the extent to which characteristics of the system facilitate
or hinder its usability. The second interface is between the user (and expert
system) and the larger decision-making organization (U/DMO) of which both are
a part. Here the issue is to what extent the system facilitates the decision-
making process of the organization. The third interface is between the
decision-making organization and the environment (DMO/ENV). Here the issue is
whether or not the expert system improves the quality of the organization's

decision making and, in turn, the organization’'s overall performance.

As can be seen, the MOEs presented in Table 1-1 are organized into a

hierarchy such that the three uppermost levels represent the three interfaces

1-17

in Figure 1-2. The topmost level of the hierarchy represents the expert
system’s overall utility or value to the decision maker and organization for
whom it is being built. Each of the three uppermost levels of MOE categories
{s subdivided further until it is easy to identify distinctly measurable MOEs.
By assuming that each terminal node in the hierarchy could be translated into
an MOE, the task of evaluating an expert system is translated into one of
"scoring and weighting."” That Is, one first tests the expert system on each
of the bottom-level nodes of the evaluation hierarchy in order to obtain the
system's scores on the MOEs. By then "weighting" these "scores™ by the
relative importance of the MOEs and MOE categories moving up the hierarchy,
one obtains an explicit, retraceable proces-. for evaluating the overall value,

and relative strengths and weaknesses, of the expert system.

The MOEs in Table 1-1 will be considered in more detail in the case
study. For now, it is important to make three points. First, the specific
MOE(s) one selects for testing and subsequently evaluating one's expert
systems should be determined from a decision-making perspective. What
information is needed? Who needs it? What stage is the expert system
development process in? In addition, one needs to consider how these ques-
tions, as well as potentially limiting factors (e.g., funds, time, personnel,
etc.), affect the selection of testing methods. Remember, the selection of a
particular method Is a decision in and of itself, for methods differ on
various dimensions (or attributes), such as the generalizability of their data
to real-world settings, their costs, the amount of control the evaluator has
in implementing them, etc. Testers and evaluators need to systematically
consider the technical tradeoffs, limiting factors, and decision-making

perspective when selecting test and evaluation methods.

Second, an eclectic approach is required to effectively test and
evaluate expert systems. As Riedel and Pitz (1986) point out, many people
erroneously assume that objective, empirical measurement is the most valid
and, therefore, preferred type of data to collect. However, the preference
for a particular type of data depends on the relative importance of the MOE
being measured by that data. If the system's performance in solving test
cases is the most important MOE, then objective empirical data will be the

most important type of data to collect. However, if the user’s opinion of the

1-18

expert system is the most important MOE, which it often is for systems
designed to assist experts, then subjective data will be the most important
type of data to collect. Moreover, as we pointed cut earlier, aggregation of
all the test data to make an overall evaluation of the expert system is

inherently a subjective judgment.

It must be remembered that the expert system can be tested on many
different kinds of MOEs. Different testing methods and, thus, types of data,
are appropriate for different MOEs. For example, the methods used to test the
logical consistency of the knowledge base are different from those used to
test the user’s performance with the expert system or how well the software is
written or what the users think of the reasoning trace. The three-phased
approach presented herein represents the kind of eclectic approach required to
comprehensively test and evaluate expert systems. The goal of this book is to
overview a range of subjective, technical, and empirical methods for testing

an expert system on MOEs important to the sponsoring team.

Third, the hierarchy of MOEs presented in Table 1-1, when combined with
relative importance weights, represents an application of Multiattribute
Utility Assessment (MAUA). MAUA, as well as other subjective evaluation
methods, will be considered in detail in this book. What is important to note
here is that these methods can be used to evaluate the implications of the
different tests from the sponsoring team’s perspective. In doing so, it is
the tester's job to test the expert system on each of the bottom-level MOEs in
the hierarchy, and to indicate their relative importance from a technical
perspective. However, it is the job of the sponsoring team (and users) to
assign the relative importance weights to the MOE categories; for example, how
important is the logical consistency of the knowledge base versus its func-
tional completeness versus its predictive accuracy versus its integration with
existing databases versus the user interface versus the system’'s response time
versus the user’'s/organization’s performance, etc. Both the tester and
sponsoring team may be involved in assigning the degree of importance to
different levels of performance within any given MOE category. The evaluator
must work with members of the sponsoring team and users to make these "trade-

off judgments” and, more generally, develop an explicit framework for relating

1-19

the multitude of specific tests to an overall evaluation of the system's value

to the organization.
THE CASE STUDY

Over the twenty-four-month period from September, 1981, to September,
1983, PAR Technology Corporation was the prime contractor to the Rome Air
Development Center (RADC) on a contract designed to develop five decision
support system (DSS) prototypes for supporting U.S. Air Force (USAF) tactical
decision making. Four tasks were performed on this project. Task I was a
detailed study of the various activities, and their functions, performed in
USAF tactical decision making. The study was performed with a view toward
defining potential aliding situations in which the technologies of Artificial
Intelligence, Decision Analysis, and Operations Research might be applied to
aid decision making. In Task II, 28 prototypes were proposed for development.
The proposals were subjected to a two-phase utility analysis and to a cost-
benefit analysis in order to identify the five prototypes that would be
developed on the project. These five DSS prototypes were developed by PAR and
its subcontractors (Decisions and Designs, Inc. and Systems Control Technol-
ogy, Inc.) in Task III, with different companies building different prototypes
on the basis of the match between the technical requirements of the prototypes
and the technical skills of company personmel. All five protctypes were
evaluated in Task IV by a test and evaluation team led by the first author.

This section overviews the three-phased (i.e., technical, empirical, and
subjective) evaluation of a DSS prototype developed by PAR called DART, which
is an expert system (see Barth et al., 1983) to assist in activity node
identification. The activity node identification process addressed by DART is
extremely difficult to perform because of the varying nature of the nodes of
interest and the tremendous volume of available relevant data. Because of
limited time and potential information overload, experience has become an
increasingly important factor in the activity node identification process.
There are, however, few analysts with the necessary activity node identifica-
tion experience. An expert system DSS prototype represented a means of
capturing activity node identification expertise, and making it available teo

inexperienced analysts. The DART prototype was to contain enough expert

1-20

knowledge to identify (with a degree of certainty) thirteen different types of
activity nodes. More importantly, the DART prototype had to be capable of
effectively communicating the rationale for the identification, for it was to

support the analyst’s decision-making process, not replace it.

The results for each of the three evaluation phases are now considered,
in turn. It is important to emphasize three general points here at the outset
of the overview. First, there were limited funds and time to perform the
tests and evaluations. All test and evaluation activities from initial
planniqg, to conducting the tests and performing the analysis, and to docu-
menting the results, had to be conducted for approximately 10t of the pro-
ject’s total cost. Moreover, the actual testing of all five prototypes had to
be conducted within a seven-month period. Finally, the prototypes were tested
sequentially, consistent with the participating contractors' development
schedule. For example, DART was the second prototype developed and tested; it

was tested in the second month of the testing period.

Second, consistent with the perspective of integrating test and evalua-
tion results into development, each prototype was tested twice. The first
test was with engineers at RADC who were novices in the prototype’s domain
area, but who had at least a college degree emphasizing computer science or
engineering. The second test was with domain experts whe represented poten-
tial users of the fully developed system. There were always at least two
weeks between the two tests to provide the development team with some time to
enhance the prototype based on the feedback obtained in the first test

session.

And, third, the overall purpose of the evaluation of DART and the other
four prototypes developed on the contract was to determine which ones showed
the greatest potential value to the Air Force and, therefore, should go on to
further development. Consequently, efforts were made to standardize the
evaluations of the five prototypes as much as possible. This fact, plus time,
money, and scheduling constraints for the evaluations, resulted in the
decision to emphasize the subjective and empirical evaluation phases over the

technical one.

1-21

In particular, each prototype was subjected to an experiment to test
whether the aid significantly improved users’ performance. Second, the table
of subjective MOEs presented in Table 1-1 was used to obtain participants’
opinions of the prototypes' strengths and weaknesses. Lastly, each test and
evaluation session concluded with a round-table meeting between sponsoring
team and the domain experts who evaluated the prototype in order to further
help the sponsors assess whether the prototype was a good enough option to
warrant further funding. This last point clearly illustrates that the test
and evaluation team saw their overriding purpose to be providing the sponsors
with the stimuli necessary to test the hypothesis that the prototype would (or
would not) improve organizational effectiveness and, consistent with the SHOR

paradigm, to select the appropriate option(s) for proceeding in the future.

The following overview is based on Adelman and Donnell (1986); more

specific details can be found in Adelman and Gates (1983).
Technical Evaluation

Th§ technical evaluation of the DART expert system prototype took place
at PAR’s corporate headquarters in New Hartford, New York, in late January,
1983. The first issue, which was actually considered early in the development
process (Rockmore et al., 1982) was whether artificial intelligence was an
appropriate analytical method to select for the activity node problem. The
answer was an affirmative one. Consistent with the SHOR paradigm, the user’'s
job is to evaluate and select hypotheses regarding activity nodes. Artificial
intelligence is ideally suited for this requirement.

The technical evaluation focused primarily on the system characteristics
of DART'’s many modules. These modules are represented in Figure 1-3 from a
functional perspective. The most visible portion of the system is the
Executive, which assists the user in managing the aid. The Executive consists
of:

. The Inference Engine,

. The Advice Interpreter,

1-22

MIARAQ [BUOJIOUNS LHVA ‘€L amnbi4

asvaviva
OSdAH

asyaviva
01Uv0

3sva _] u3oUNWW [T
3nY 30NIAIAT |=—
HISHVd 13N | anona HILIHAHALNI
3sva 30 JONFYI4NI JONIHIINI A0IAQY
NOILOZ TS WNINETL
) yasn
AVidsia
HIOVNVW HIOVNVI
1300M 3MNn0axa *1 Avidsia
73a0m HIAIHA 34
NHOMLIN €0 Jovssam | ° J9VSSan

1-23

. The Model Manager, '

. The Display Manager.

Based upon a selected goal hypothesis (one of the thirteen identifiable
activity nodes), the Inference Engine accesses that portion of the Inference
Network which will analyze the pertinent, available information concerning the
goal. The rules contained in this selected segment of the Inference Network
use the data (or evidence) found in the message and associated degrees of
belief from the Evidence Manager to identify the most likely activity node.
The Advice Interpreter advises the user of the degree of belief for this
identified activity node. Additionally, the user can consult the Advice
Interpreter for the evidence used in reaching this decision. Once advised,
the user can call the graphics display via the Display Manager or call the
Model Manager to update the activity node identification model. The Display
Manager provides the means to display terrain data; the Model Manager places
identified activity nodes on this terrain. The Message File and Driver
provide a time-sequenced list of reports which the analyst can use to corre-
late multiple reports of the same activity node, thereby increasing the .
confidence in the identified activity node.

In brief, the evaluation team concluded that, from a technical perspec-
tive, the DART prototype contained all of the modules necessary for a consul-
tative expert system to support the activity node identification, decision-
making process. The experts who participated in the empirical and subjective
evaluations supported this position, for, although they recommended many
improvements, they neither recommended additional modules nor deletions of
those already developed for the DART prototype. The logical consistency,
functional completeness, and predictive accuracy of the knowledge base were

considered as part of the empirical evaluation with the domain experts.
Empirical Evaluation

The goal of the empirical evaluation phase was to objectively assess
whether DART significantly improved the accuracy of analysts performing the
target identification process. To accomplish this goal, an experiment was

performed. The three independent variables were (1) whether the sanalyst was '

1-24

experienced or not in activity node identification, (2) whether the analyst
performed the activity node identification task with or without DART, and (3)
which of two different activity node identification problems the analvst
performed. The dependent variable was the quality of the analyst’'s solution
to the activity node identification problem.

The test setting for the empirical evaluation was created concurrently
with the performance of the technical evaluation. An isolated room 14 feet by
12 feet was used for the unaided condition. A smaller room with a computer
terminal and DeAnza display, both of which were linked to a VAX 11/780 system,
was used for the aided condition. [Note: Operational versions of DART and
the other DSS prototypes were to be tailored for military microcomputers on
subsequent procurements at the government'’'s discretion.] Both test areas had
1:500,000 and 1:250,000 scale charts of the geographic area of interest used
in the activity node identification problems.

The participant’s task for each of the two problem scenarios was to
identify ground components of opposing forces moving in a specified direction
over the area of interest on the basis of message data. The problems differed
in the number of each of thirteen possible activity node types and the
available message data. In the first problem there were 100 messages; in the
second problem there were 80 messages. Each participant had 1 1/2 hours to
perform each problem regardless of whether he or she worked with or without
DART. The activity nodes identified by each participant were placed on
acetate and overlaid on the large wall map representing the geographic area
for which the problem scenarios were created. Since a correct solution
existed for each scenario, it was possible to determine the number, location,
and type of correctly identified activity nodes. Using this information and
looking at the acetate overlay map, the experts then rated the quality of each
participant’s solution for each scenario on a 0-to-10 scale, where higher
scores meant a better solution. Qualitative ratings were required because all
misclassifications were not equally detrimental; the solution’s quality
depended on an analyst's judgment as to the importance of the type and
location of the misclassifications., Each participant’s solution was coded by

letter to minimize the experts’ ability to identify its author.

1-25

The empirical and subjective evaluations were conducted at PAR's cor-
porate headquarters in New Hartford, New York, over two 4-day periods in
February and March, 1983. The participants for the first session were RADC
personnel who had no activity node identification experience; these four
participants are referred to as nonexperts. The participants for the second
session were U.S. Air Force analysts with considerable activity node iden-
tification experience; these three participants are referred to as experts.
The participants were provided through the cooperation and courtesy of
different Air Force agencies. Although the sample size was small for an
empirical evaluation, it was as large as could be obtained, given prior Air
Force commitments. Larger sample sizes should be used whenever possible to
provide the power necessary for traditional statistical tests of a prototype’s

effectiveness (e.g., see Adelman ot al., 1982).

The primary value of the session with the nonexperts was identification
of the following three necessary modifications to the test conditions and the
DART user interface. First, the nonexperts did not have enough hands-on
training in using DART; consequently, the experts’ schedule was modified to
provide more training. Second, DART was slow and cumbersome to use because it
required the user to update the Model Manager and Display Manager after each
message by sequentially accessing a number of menus; consequently, DART was
modified to give the user the ability to automatically update the Model
Manager and Display Manager after each message, thereby making DART much
faster to use. And third, the message flow in the unaided participants’ task
was found to be unrepresentative of the analyst’s actual environment; conse-
quently, the message flow was modified for the session with the experts so

that it better represented the analyst’s actual environment.

The results of the session with the nonexperts were, however, not
included in the empirical and subjective evaluations of DART because so many
changes were made to the test conditions and DART user interface between
sessions that, prior to the session with the experts, the test and evaluation
team concluded that it was inappropriate to combine the results of the two
sessions. However, it is of importance to note here that the cumulative
effect of the three classes of problems described above resulted in the

nonexperts performing the activity node classification task worse with than

1-26

without DART at a statistically significant (p < .05) level. Integrating the
feedback from the tests with the nonexperts back into the development process

will, as will be shown, significantly improve the DART prototype.

The schedule for the DAxT evaluation session with the experts proceeded
as described below over the 4-day evaluation period. Monday morning was
dedicated to providing a technical overviaw of DART so that the experts would
understand how DART performe . -:tivity node identification. O.. Mcnday
afternoon and most of Tuesday, the experts received hands-on training in using
DART. This was accomplished by nroviding each expert with two 1 1/2 hout
training sessions on DART. The DART test scenarios were completed by the
experts on Tuesday and Wednesday. Two of the experts worked the first
scenario in the wnaided condition, and one used DART. In contrast, two
experts worked the second scenario using DART and one worked without it. This
arrangement ensured that cach expert had used DART to solve one scenario, and
that there were 3 aided and 3 unaided solutions in total. On Thursday, the
experts rated the quality of the three solutions generated by the experts for
each scenario. The experts’ ratings were based on the number, location, and
type of both correctly and incorrectly identified activity nodzs. The
participants also completed the evaluation questionnaire. and ¢iscussec their
impressions of DART’s strengths and weaknesses with members of PAR’s evalua-

tion team and RADC personnel monitoring the contract.

The experts’ quality ratings of the experts’ solutions, and the condi-
tions under which they were generated, are presented in Table 1-2. The higher
the number, the better the quality rating. Pearson product-moment correla-
tions (r) were calculated to determine the extent of agreement among the three
experts' ratings. Pearson product-nowent correlations can vary from +1.0
(indicating perfect agreement) to -1.0 (indicating periect disagreement); a
value of zero indicates that there is no relationship among the ra.ings. The
Pearson product-moment correlations were computed by combining the ratings for
both scen~rios, thereby creating a sample size of six (instead of three) and,
in turn, greater confidence in the results. The Pearson praduct-moment
correlations among the quality ratings of experts El and E2, El1 and E3, and E2
and E3, were .94, .93, and .97 respectively. All three correlations were

statistically significant at the p < .01 lev:l, thereby indicating that there

1-27

was considerable agreement among the experts’ quality ratings of the solu-

tions.

Table 1-2: The Experts’ Quality Ratings for their Solutions
with and without DART

SCENARIO #1 SCENARIO #2

GoB* E1lE2 |[E3 | Mean } GOB* E1[E2 [E3 | Mean
A(Unaided) | 3} 53] 367 | A{Aided, 6 10
B(Unaided) | 8]8]|8] 80 B(Unaided) | 99|91} 90
C (Aided) 517171 633 | C(Aided) 71818 767

B

*GOB is Ground Order of Battle

The mean quality rating and the sample size for each of the four cells
in the 2 (Aid) X 2 (Scenario) design for the experts’ solutions are presented
in Table 1-3. As can be seen, there are only three observations each in the
Aidad-Scenario 1 and Unaided-Scenario 11 cells. This orcurred because, since
only three experts participated in the evaluation, two celis of the design
could have only one participant if each expert were to (1) perform each
scenario only once and (2) work both with and without the aid. The Aided-
Scenario I and Unaided-Scenario II conditions, and the expert who worked them,
were rancom.y selected by the evaluation team. Table 1-3 shows a sample size
of three observations for these two cells because eacn of the three experts
independently evaluated the one expert’'s solution. The Unaided-Scensario 1 and
Alded-Scenario II cells have a sample size of six obs. —vations because each of
the three experts independently evaluated the two experts’ solutions for these
two cells. Each expert’s rating was used as an independent observation of
each solution, instead of taking the mean of the three experts' ratings for
each solution, to have a sample size that even apprcached the size neccssary

for performing statistical tests,

1-28

Table 1-3: Experts’ Mean Quality Ratings and Sample Size
for the 2 (DSS) X 2 (Scenario) for the Experts' Solutions

SCENARIO{ SCENARIO I x
N=3 N=6 N=9
AIDED
6.33 7.33 7.00
Nub N=3 N=9
UNAIDED
583 9.00 6.89
— NS N=9 N=18
X
6.00 7.89 6.95

A repeated megsures t-test, where the experts were the repea:ed measure,
was used to statistically determine whether, on the average, (1) experts
performed better aided than unaided, and (2) if performance was significantly
better for one scenario than the other. ({Note: An Analysis of Variance was
not used because, due to the small and unequal sample sizes for the cells,
analysis of the Aid X Scenaric interaction was not warranted.] There was no
statistical difference in the mean scores for the aided and unaided condi-
tions; experts performed equally well working with DART as without it. Mean
performance was, however, significantly better for Scenario II than Scenario I
(t = 2.34, df = 4, p < 0.05). This may have been due to practice effects
because Scenario II was performed after Scenario I. This hypothesis is
unlikely, however, for the participants were experts who, of course, had
substantial experience performing substantially more complex scenarios in

operational settings. A more likely explanation is that Scenario II was

easier than Scenario 1.

An additional analysis was performed in an effort to better understand
why there was no difference in the performance of experts working with and
without DART. This aspect of the empirical demonstration illustrates but one
of a number of different methods that will be considered later in this book

for testing the predictive accuracy of an expert system’'s knowledge base. In

1-29

particular, the evaluation team counted the number of mistakes the experts
made for the thirteen different activity nodes in the two scenarios, both with
and without DART. Although no statistical tests were performed because of the
small size for each node, examination of the mean scores suggested that, when
aided, the experts were better in identifying certain activity nodes, and
worse in identifying others. This suggests that (1) DART's rule-base for
identifying certain activity nodes needed improvement, and (2) that such
improvement would result in experts performing the test scenarios better with
DART than without it.

Subjective Evaluation

The subjective evaluation of DART was composed of the experts’ answers
to two questivnnaires. The first questionnaire was of a short-answer format
with the questions designed to assess the expert system’s performance on the
subjective MOEs presented in Table 1-1. The second questionnaire was of an
open-ended format which gave the experts an opportunity to indicate, without
any prompting from the evaluation team, what they perceived to be the
strengths and weaknesses of the DART prototype and recommend improvements to
it.

We will present only the results obtained from the first questionnaire
for two reasons. First, there was general agreement between the answers to
the two questionnaires; consequently, it is unnecessary to present the results
to both of them here. Second, the short-answer questionnaire had been
standardized so that, except for substantive changes unique to DART, the same
questionnaire could be used to assess participants’ Impressions of the
strengths and weaknesses of each of the five prototypes developed on the
contract; consequently, the short-answer questionnaire represented the first
step in developing an empirically-based questionnaire that could be used by
other people evaluating decision support technology. This focus, as well as
the detailed analysis of the questionnaire for all five of the prototypes

developed on the contract, can be found in Adelman, Rook, and Lehner (1985).

Before describing the questionnaire, we will briefly describe the MOE

hierarchy to facilitate readers’ consideration of how to develop ones ap-

1-30

propriate to their development projects. In particular, the MOE categories
were designed to be as general as possible so that the same MOEs could be used
to evaluate each prototype. To accomplish this, Adelman and Donnell (1986)
refined and expanded the hierarchy of evaluation criteria initially developed
by Sage and White (1980) to be compatible with the three-interface perspective
presented in the previous section of this chapter. In doing so, they used as
many of the criteria as possible that were used earlier in the contract when
deciding which prototypes to develop in the first place. Other MOEs could
{and would), of course, be used in an evaluation, depending on the character-
istics of the expert system and the concerns of members of the sponsoring and

development teams.

MOEs assessing the quality of the Expert System/User interface were
divided into two major groups of criteria: those that assessed the match
between the expert system and potential user’s background, workstyle, and
operational needs; and those that assessed the adequacy of the expert system's
characteristics. This latter group was composed of general expert system
characteristics—such as its ease-of-use and response time—and specific
characteristics—such as the adequacy of the expert system’s knowledge base,

graphic displays, hard-copy capabilities, and text.

MOEs assessing the quality of the User-Expert System/Decision Making
Organization interface were divided into two major groups of criteria: those
assessing the expert system’s efficlency from an organizational perspective,
and those assessing the system’s fit into the organization. Efficiency
criteria included the amount of time it took to use the expert system to
accomplish the task it was supporting (this is distinctly different from its
response time), data management and set-up time requirements, and, pertinent
to the present application, the system’s perceived reliability and suppor-
tability under battle conditions, Criteria explicitly focusing on the expert
system’'s potential effect on organizational procedures, other people’s work,
the flow of information, and its value in performing other tasks were used to
asscss the system’s fit into the organization for which it was being devel-

oped,

1-31

MOEs assessing the gquality of the Decision Making Organization/Environ-
ment interface were grouped into three major criteria: the perceived quality
of decisions obtained using the expert system; the extent to which the expert
system's technical approach matched the technical requirements of the task;
and the extent to which the system improved the quality of the decision-making
process. This last group of criteria was quite broad, ranging from the extent
to which the expert system helped the user survey a wide range of alternatives
and objectives, to the degree to which the system increased or decreased the

user’'s confidence in the decision.

We now turn to describing the short-answer questionnaire. Specifically,
the questionnaire had 121 questions. Most of the questions assessed the
bottom-level MOEs in Table 1-1; however, 6 questions directly assessed overall
utility (node 0.0 in Table 1-1), 2 questions directly assessed decision
process quality (node 3.3 in Table 1-1), and 3 questions each assessed the
quality of the training sessions and the test scenarios (neither of which are
MOEs). All questions required the participant to respond on a eleven-point
scale from O (very strongly disagree) to 10 (very strongly agree), with 5

being "neither disagree nor agree."

There were two or more questicns for each MOE criterion in an effort to
achieve greater confidence in the criterion scores. The number in the
parentheses to the right of each bottom-level MOE in Table 1-1 indicates the
number of questions assessing that criterion. The actual number depended on
the availability of previously written questions assessing the criterion
(e.g., from Sage and White, 1980), the ease in writing "different-sounding"
questions for the criterion, and its depth in the hierarchy.

Half the questions for each criterion were presented in each half of the
questionnaire to eliminate sequence-ordering effects. In most cases, a high
score indicated good performance, but, typically for one question measuring
each criterion, a low score indicated good performance in an effort to ensure
that the participants paid careful attention to the questions. A prototype’s
score on a bottom-level criterion was the mean score of the participants’
responses to the questions assessing it. Values for criteria moving up the

hierarchy were the mean score for the criteria below it.

1-32

It is important to make two technical notes at this point. First, by
averaging lower-level criterion scores to obtain upper-level criterion scores,
one is giving each MOE criterion equal weight in the hierarchy. Although it
was quite possible that the participating domain experts may have thought that
certain bottom-level criteria were more important than others, members of the
evaluation team thought it inappropriate to have the (DART) experts differen-
tially weight these criteria at the time of the evaluation because we wanted
to use the same weights for evaluating all five prototypes in order to provide
a common evaluation baseline. And, since the hierarchy of MOEs in Table 1-1
was substantially larger and in many ways different from the MOEs used in Task
IT of the project to select the prototypes for development, the evaluation
team considered it inappropriate to obtain relative importance weights from
the sponsoring team prior to (or during) testing and evaluation for fear that
certain developers might consider their prototypes adversely affected. It is
important to note here that subsequent research published by Adelman, Rook,
and Lehner (1985) showed that, in general, the participating RADC engineers
and USAF domain experts differentially weighted the importance of the criteria
when assessing the overall utility of the prototypes.

Second, there is an alternative approach to obtaining the scores on the
upper-level criteria. Specifically, one could have taken the average of the
scores to all the questions assessing each upper-level criterion. For
example, to obtain a score for criterion 1.2, one could have averaged the
scores for all the questions assessing criteria 1.2.1 and 1.2.2 instead of
just averaging the mean scores for criteria 1.2.1 and 1.2.2 as we did. The
alternative approach would have given greater weight to criterion 1.2.2 [
because there were more questions for criterion 1.2.2 than for 1.2.1. Again,
because we did not want to differentially weight the MOE criteria, we rejected

this approach. /

On the basis of the six questions directly asking about its utility,
DART received a mean score of 8.22 on the 0-to-10-point scale. On the basis
of the evaluation hierarchy, DART received a mean overall utility score (node
0.0) of 7.36. The Expert System/User interface received the highest mean

score (7.8l) of the three interfaces. The User-Expert System/Organization

1-33

interface (7.17) and Organization/Environment interface (7.09) received

comparable scores.

The experts’ subjective evaluation scores for all of the criteria in the
MOE hierarchy are presented in Table 1-4. From the perspective of the quality
of DART's knowledge base, it is important to note that, relatively speaking.
the experts gave low scores to the expert judgments stored in the system (noce
1.2.2.3 = 6.84), DART's technical soundness (node 3.2 = 6.52), and the
framework for incorporating judgments (node 3.3.1 = 6.83). Although these
scores are still good, they are consistent with the results of prototype'’'s

empirical evaluation, which was that DART's knowledge base still needed work.

CHAPTER SUMMARY

The purpose of this chapter was to present a general framework and
approach for testing and evaluating expert systems, and to show how they were
applied in a single case study. The framework provides a paradigm for
considering decision making and, hence, expert systems, within the broader
organizational, problem-solving context within which both exist. The approach
is multi-faceted in that it has three phases: a technical phase for "looking
inside the black box;" an empirical phase for rigorously assessing the expert
system’s impact on performance; and a subjective phase for obtaining users’
opinions regarding the system's strengths and weaknesses. Finally, the case
study presented the procedures for, and results of, implementing the general
framework and three-phase approach for an Air Force expert system prototype to

support opposing force activity node identification.

This chapter has been introductory in nature, for we have tried to
emphasize a general perspective that one should keep in mind when testing and
evaluating expert systems. Remember, test and evaluation methods are tools
that can be used to provide sponsoring and development team members with the
feedback they need to improve the judgments and decisions inherent in system
development. For that reason, test and evaluation represents a control
mechanism that keeps a requirements-driven, expert system development proces:

on track.

1-34

i9°8 NTVA DNINIVYL §°%°2°2
££°9 S$321AN3S $8°4
¥3HI0 ¥O Jvs O 3NTVA 2°9°¢°2 (gg°6)
05°¢ SASVYL ¥3HL0
ONIWNO4¥Id NI 3INTIVA 1797272 s
L8 $133443 3018 %°2°2 9172
418 #0734 NOILVWNOINI MO 103443 §°2°2
L avoIX¥ON 88’9
$:37d03d Y3IKI0 2727272
2972 ALl1ay 89
€874 FON3AI4NOD DOL°E°S -14300v WDILIT04 1727272
e NOISSNISIQ 4NO¥D NO 123343 6°L°¢ rA NCIiISOd 95°9
0572 MOTIVINIMIIdN] B°E°¢ $137403d ¥3IWI0 NO 123443 27272
82°4 NOIIVWMO4NI 40 35N 2°§°¢ 00°2 $3¥NAII0Yd £9°L
e $53304d ININVN NOILIVZINVI¥O NO 133443 1°2°2 06°9
-NOISTIJ3C 40 NOTLIVNIWMYXI-3¥ 9°¢°¢ 49°8
499 SIININDISNOD 40 ININSSISSY S°E°f 69°4 NOILYZINVDEO B SSQ N33ML3IA HIIWW 272 %8
gL SIININOISNOD INIHDIIM ¥'E°¢ s2°9 ALll18y 8L
£8°9 $3AI1D3780 40 IONYY A3AUNS £°%°€ -TIVAY 3¥VRQEVK 2°€°L°2
£€£°7 SIALIVNYILIV 40 JONVY A3ANNS 2°C°¢ 9s°L ALIVIGVIIVAY TTIXS L°E°L°2
£8°9 JLEL LDt 16°9 SNOILIGNOD 3TL1VE ¥3ONN 9s°8
ON1IVIOJHOON] NUOMIWYHES 1°¢°¢€ ALIT18YL¥04INS Q3AI3D¥I4 €172 97°R
0s°9 SNOILIONOD F1LLlVE
(£8°2) SNOILSIND 2 NO Q3SVE - YIGNN ALITIGVITNIY GIAIIINI4 2°1°2 8974
8l (S31N81dLLY 01 £E°9 SLINIWIAINOIY
NO Q3Sv8) AL1TVND SS3J0¥d NOISID30 ¢£°¢€ InlL dN-138 £°4°17°2 2278
0z 9 INFWIOVYNYM ViVQ 80°L
258’9 (SINIWININDIY TVIINHIZL ¥04 GININDIY 3IWIL 2°1°i°2
1SISATYNY 3 HIVOYddY TVIINHDIIL «SSA (17 LNIWHS 1 1dWOIIV NSVL 278
NI3NL38 HOLYKW) SSINCQNNOS TWIINHIIL 2°% ¥04 GIWINO3Y FWIL 117472
vs°9 q33ds t°(°2
85°¢ ALITYNO NOISIO3Q '€ §6°4
979 S¥O1DV4 AINIIJI443 72
607 ¢ 3IV4¥IINT INIANOWIANI/NOTIVZINVINO O°¢ 18°4
FARN A 30VAYILNT NOILYZINVDYO/SSQ-¥3SN 0°2
9872 AHDUVYIIN VI¥ILIND YNYW 3HL NO 03svd -
2’8 SNOIiSINO 9 MO Q3svd -

(NO11iVL
-NIWATdWI ¥O4 TVILNILO4 “°3°1) ALITLLN 0°C

Agoseiol YNV 34} Ul JOW Yoea uo
1HVQ 10} 524095 UopEN|BAT 2ARDRIGNS ;spadx3 :p-| jqel

1%X31 .80 @'2°2°¢
AdOJ
QuVH ¥O4 Q33N 3HL L°2°2°L
SHAVY¥9 ,SSa 9°2°2°L
SNOIIVIN3TY]
211VWOLAY .SSG §°2°2°1
SINIWIONC
AJIOOW OL ALITIGY %°2°2°\
§S@ NI Q3¥0is
INSWOON: 1¥3dX3 £°2°2°1
§3714
Viva 40 S3dAL 2°2°2°}
JOVIUIIND ¥3SR L1227t

SIIISI¥ILIVYVHD J14103d5 2°2°)
IWIL ISNOISIY 7120}
ONINIVYL 4O 3S¥Y3 §£°1°2°1
(ON1
-QNViSH3IANN ¥3SN
“3T1) AINIUVISNVYEL 271727}
sn 40 3sva 1°i°2°4
SOILSIYILIVEVHD TY¥3INID 1727}

1-35

SIILSINILIVEYHI ,S8C Z2°L

SG3I3IN TYNOLIVEIJ0 HIIM HOIVW §£°1°1L
1S3¥3LNT/QVOTxNOM

JATALSHBOM HIIA HIiVW 27171
QNNONINIVE TYIINHDIYL

2 ONINIVEL HLIA HDlwW L7170

TINNOSY3d ¥ SSG NIIMLIB HIIVW 171

JOVIAIINT ¥3sn/ssa 074

It must be remembered that the expert system can be tested on many
different kinds of MOEs. Different testing methods and, thus, types of data,
are appropriate for different MOEs. The specific MOEs one selects for testing
and subsequently evaluating expert systems, should be determined from a
decision-making perspective. What information is needed? Who needs it? What
stage is the expert system development process in? In addition, one needs to
consider how these questions, as well as potentially limiting factors (e.g.,
funds, time, personnel, etc.) affect the selection of testing methods.
Remember, the selection of particular test and evaluation methods is a

decision in and of itself.

The next chapter overviews subjective, technical, and empirical test and
evaluation methods. Prior to doing so, however, we overview the expert system
development process in order to better indicate the appropriateness of
different test and evaluation methods during development. After overviewing
the different kinds of methods, we present a (1) hierarchy of MOEs for
capturing subjective, technical, and empirical data, and (2) general evalua-
tion approach for integrating the tests on these MOEs into an overall assess-

ment of the utility of the expert system under development.

1-36

CHAFTER 2:

LAYING THE FOUNDATION: TEST AND EVALUATION CRITERIA,
TRE EXPERT SYSTEM DEVELOFMENT CYCLE, AND AN OVERVIEW OF SUBJECTIVE,
TECHNICAL, AND EMPIRICAL TEST AND EVALUATION METHODS

This chapter builds the foundation upon which the remaining chapters of
this book rest. It has three principal sections. The first section overviews
test and evaluation criteria identified by Adelman and Ulvila (in press).
These criteria are organized into a hierarchy that can be used with Multi-
Attribute Utllity Assessment (MAUA) procedures-—one of the subjective test and
evaluation methods—to assess how well an expert system is meeting the
requirements of users and sponsors. As was emphasized in the last chapter,
the specific criteria one would use in one’s tests and evaluations would
depend on the specific requirements of one’s users and sponsors. However, the
hierarchy presented herein contains the wide range of test and evaluation
criteria commonly found in the literature and, therefore, can give one a broad
list of criteria from which to start. 1In Chapter 7, we provide some guidance

for sifting through this list.

The second section of the chapter overviews the expert system develop-
ment approach. Surprisingly, this "approach" takes somewhat different forms
depending upon who is describing it. Nevertheless, it is epitomized by an
iterative, prototyping approach that is distinctly different from the tradi-
tional software development process, although more recent formulations attempt
to integrate requirements analysis and structured design aspects of the
latter. Moreover, test and evaluation are an inherent part of this iterative
development cycle. To quote Harrison (1989, p. 311), "Note that incremental
development, refinement, reintegration and so on all imply that evaluation is

continuous and inseparable from development.®

Evaluation is continuous and inseparable from development because
judgment and decision making are inherent parts of the process. Formal test
and evaluation methods have to be capable of improving these judgments and
decisions and, thereby, the development process, throughout its iterative life
cycle. This requires the application of different test and evaluation

methods, appropriately matched to the information and decision needs of

2-1

different members of the sponsoring and development teams, throughout develop-

ment.

The third section overviews the many different subjective, technical,
and empirical test and evaluation methods. Other chapters in the book will
describe these methods in more detail. Our purpose here is simply to intro-
duce the reader to these methods. Try to keep the broad evaluation perspec-
tive provided by the SHOR paradigm in mind when overviewing these methods.
Remember, at the broadest level, the evaluator’s job is to help members of the
sponsoring team decide whether development of an expert system is an effective
option for dealing with hypotheses regarding the current and/or future problem
environment with which the organization will be dealing and, if so, the

general requirements that the expert system will have to satisfy.

Once the development process is underway, the evaluator’s job is to
systematically gather, filter, and aggregate data (i.e., stimuli) about the
expert system in order to test the hypothesis. 1If there is a problem or if it
is not clear what action to take, then options need to be generated, eval-
uated, and selected for correcting the situation so that the development
process can be kept on track. In short, the application of formal test and
evaluation methods helps members of the sponsoring and development teams
monitor the perceived utility of the expert system under development and take

corrective action to increase the probability of its use and effectiveness.

All three classes of test and evaluation methods are applicable during a
formal test and evaluation of an expert system prototype by an outside group,
as was shown in Chapter 1. In addition, however, specific methods are more or
less applicable at other times in the development cycle. In particular,
subjective evaluation methods are applicable early in the cycle because they
represent an explicit means for defining the judgments of members of the
sponsoring team and potential users of the system. For example, Rockmore et
al., (1982) used MAUA, and a MAUA-based cost-benefit analysis, to select among
various types of DSS technology, including expert systems, for subsequent
development. Slagle and Wick (1988) used a subjective method analogous to

MAUA to evaluate candidate expert system application domains. And Bahill et

2-2

al. (1988) used MAUA to address the valuative and technical judgments inherent

in selecting expert system shells.

Technical test and evaluation methods are also applicable during design
and development. For example, as part of the knowledge elicitation and
representation process, one should routinely assess the adequacy and accuracy
of the knowledge base. This can be accomplished by using (1) static testing
to help assess the knowledge base’s logical consistency and completeness, and
(2) experts, both those participating in development and those acting as
evaluators, to help assess the knowledge base’'s functional completeness and
predictive accuracy. Ideally, the test and evaluation team will also have
access to "ground truth" data for assessing predictive accurazy, as illus-
trated in the DART evaluation. In addition, traditional software test and
verification methods can be used to help assess the "service" versus "compete-
ncy" requirements of the expert system. These methods have considerable
applicability (a) prior to programming code for verifying requirements
analysis documentation and functional models of the software), and (b) once
the development process is well underway, during system packaging and trans-

fer.

In contrast to technical test and evaluation procedures, which focus on
how well the system was developed, empirical test and evaluation methods focus
on how well decision makers can perform their task(s) with (versus without)
the system. From an iterative, prototyping perspective, it is anticipated
that experiments will be conducted throughout development as a means of
objectively measuring the performance of the expert system and testing
hypotheses for improving it. After transferring the expert system to the test
organization, experiments, quasi-experiments, and case studies can be used to
evaluate performance in the actual or simulated organizational setting.
Remember, the expert system may be addressing only part of a much larger
organizational decision. Even if the technical evaluation of the knowledge
base shows that it has perfect predictive accuracy, the expert system's
contribution still may not ensure better decision making within the larger

organizational setting.

2-3

TEST AND EVALUATION CRITERIA

Table 2-1 presents a hierarchy of test and evaluation criteria. As
will be discussed later in Chapter 3, this hierarchy can be used in conjunc-
tion with MAUA scoring and weighting procedures to evaluate the overall
utility of an expert system to users and sponsors. Since the goal of develop-
ers and sponsors of expert systems (or for that matter, any type of software)
is the creation of high-utility technology, the ultimate goal of test and
evaluation is to determine (and facilitate) the extent to which this goal has

been achieved.

The hierarchy in Table 2-1 has five branches. The first presents
criteria for assessing the adequacy of the knowledge base or, as Rushby (1988,
P. 75) has called them, the "competency requirements" of an expert system.
Specifically, Table 2-1 lists different criteria for assessing logical
consistency and completeness, functional completeness, and accuracy (and
adequacy). Chapter 4 will focus on technical evaluation methods for measuring
these criteria. In particular, we will overview the use of static testing
methods for assessing the logical consistency and completeness of the knowi-
edge base, and the use of domain experts, in conjunction with empirical
evaluation concepts and methods, for assessing the functional completeness and

predictive accuracy of the knowledge base.

The second branch is the correctness of the inference engine. Sponsors
and users need to know that the inference engine has no errors in how it
accesses the knowledge base and in how it propagates rules and probabilities
(or other quantitative representations of uncertainties) in reaching conclu-
sions. Testers should not assume that the inference engine has no errors,

Some expert system shells do not provide test data with their documentation.

The third branch addresses conventional software requirements, referred
to as "service requirements' by Rushby (1988, p. 75) within the context of
expert systems. Conventional software test and verification criteria are
important for expert systems too, particularly if the expert system has to be
embedded in, or interfaced with, more conventional software modules. Service

requirements include information about computer system design and portability

2-4

3uNLONYLS

S IUNIIDO I

IWNOLLVZINYDHO
40 1OVdN @

ONINIVHLSTUNS

"GYOMHOMANALS
HHOM 40 (OvdWi @

LOVaL
TWNOILVYZINYOHO

WIALSAS (HIIXT

40 ADNIH' /dSNVHL @

IDVH INOILYINISIH

40 ANNO3GY @

NOILYNYIdX3 _

NOILVYONddV
40 3d00S

|

I

INGLNO/INGN @
INIHOS
NOILVIN3SIdd 34

40 AUHBVI4300V @
SLINS3H

40 ALINBV1d300V @
NOLLOVHIIN
INIHOWINYN

40 AUNBVI4300V @
ISN A0 ISV3 @
ION3QIIMNDO0 @

a3sns3dniv3d @
ISN JO HINNYN @
3SN JO INJIX3 @

~ NOINIO L _

31gVAHISE0 _

o

SNOSVY3H 40 ALTVND @
SHIAMSNY 40 ALTVND @
HSVLHSINdNODJVY L LINIL @
INL ISNOCS3H @

SININIYINOD3Y TUNS -

NOLLVANIWNJ0Q -

SINFNIHINO3Y Viva -

SIVIWHOS -

NOILVHOIINIWILSAS @
SHOHYI INdLNO/INGNI -

DNITANVH NOLLVaOVHD3A -

ONIWNNISN 3HNLY3S -

(3”vMaHVi{) ALINBYAYO -

ANIWOQaNr _

Aurngvsn |

L

_

_

[sonvEnd¥3d

|

svig @ (IHVYMAHVE) ALITHEVIIAY -
AJVHNOOV @ SINFNIHINOIY F0VdS -
Q33d4s @ JNILNOY -
INLL dN-13S -

1 JOVYSN HILINIWNOD ©
_ HiNYL DZJO&& ALNEVIHOd -
NSIS3a -

WILSAS HIINIWOO @

3Isve

FDATITMONN 30 ALNEVIHAON -
ADYNOS 40 ADVADIAY -

ALNEVY14300V

NOILVIN3SIHIIY ID0ITMONM -
S$3MNH 30 AQVHNOOV -
S12V4 40 ADYHNOODY -
AJVHNOIV JAILDIAIHS @

SNOLLY LINIT

FOUITMONXM QFNAUINICE -

Q3HIA0D ATAL3NGNOT

NOISYIONOO/NOLLYDIddY -
S1NdNI Q38IS3a 1Y -
SSANILITINOD TIYNOILONNY @

SON3 Ov¥3a -

NOISNTONOQ 338YHOVIUNN -

SANTVA IANBIHLLY WOITH -

S3NTVA

FUNGIMLLY GFONFHIFIBNN -
SS3INILINOD WIID0T @

SINY UVINTHLD -

S3INY ONILOTINOD -

S3TNY 03NNSEANS -

S3TH INVONNG3Y -
ADNZUSISNGD IWOID0T &

— IN3IINOD

[

_ JWNLONKLS _

I

!

3ome3s. | [3wonazonawasm] [3sve 3oa3TmoN:]

_

_

BLIlLD uolenieAl pue isa) Buneibau) 10j ysomaweld NYN Y :1-C dlqet

TIVH3IA0

2-5

(i.e., transferability to other hardware and software environments), computer
usage (e.g., set-up time, run time, space requirements, etc.), system integra-

tion, operator skill requirements, and documentation.

The fourth branch in Table 2-1 contains performance criteria, - aich are
decomposed into criteria based onr ground truth (or experts’ ratings of
decision quality), and the judgmenvs of users. Both "ground truth" and
"judgment" categories focus on the quality and speed aspectr of performance.
As Cats-Baril and Huber (1987) have shown, users’ judgments of system perfor-
mance do not always agree with more cbjective data. Consequently, although it
is sulbstantially more work, the use of ground truth data is urged when
assessing performance. Moreover, we recommend here (as we will throughout the
discussion of empirical evaluation methods) that experiments with aided and
unaided corditions be relied on prior to transferring the system to its
operational environment in order to rigorously assess performance with and
4ithout the system. Field experiments, quasi-experiments, and case studies
should be relied on after transferring the expert system to its operational

(or operational teust) environment.

The usability branch is composed of criteria based on evaluators’
observation of participants working with the system and participants’ judg-
ments of it. In conjunction with observation methods, users’ kev strokes can
be recorded in an effort to better understand the extent to which the par-
ticipants actually use the expert system during the problem-solving task, the
manner in which they use it within the context of the more familiar procedures
typically found in their job setting, and the specific features of the system
they use most frequently. In addition, questionnaires analogous to the one
used in the DART test and evaluation can be used to obtain users’ opinions
regarding their confidence in the expert system’s recommendations, its ease of
use, the acceptability uf the person/machine interaction process, its scope of
application, the adequacy of the system’'s explanations for its recommenda-
tions, the system’s organizational impact, and specific input-output con-

siderations.

The above criteria can be used to assess the adequacy of an expert system

from the urars’ (and sponsors’) perspective. To do so, one must test and, in

2-6

turn, score the expert system on each criterion that is considered important
(i.e., given a nonzero, relative weight) by the users. Thus, each criterion
represents a reference point that can be used to assess the system's progress
on that criterion throughout development. For example. one would like to see
a smaller number of redundant rules, a higher percentage of accurate predic-
tions, better overall performance by the user, more favorable opinions about
the interface, etc., as the system matures. Graphs can be developed to track
trends on each criterion over time and, thereby, facilitate management of the

test and evalustion process.

As we mentioned in Chapter 1, we will use the term “test" to refer to
the process of measuring the expert system’s performance against evaluation
criteria, such as those listed in Table 2-1. The type of testing method to be
used will depend on the criterion against which the expert system is being
tested. For example, one would use (1) methods implementing the rules of
logic to test the logical consistency of the rules in the knowledge base; (2)
empirical data collection methods to test the predictive accuracy of the
knowledge base against the judgmental accuracy of expe.ts or ground-truth
measures of accuracy; (3) observation methods to record the features of the
expert system that users routinely use when solving test cases; and (4)
subjective methods, such as questionnalres, to assess users' opinions of the
system’'s strengths and weakness. That is why a multi-faceted approach is

necessary to comprehensively test and evaluate expert systems.

Central to the concept of evaluation is the concept of the utility or
importance of the test results to the sponsoring team. For example, if the
sponsoring team’s primary requirements were that the expert system's (a)
knowledge base be logically consistent, (b) functionally complete for the
domair of interest, and (c) highly accurate in its predictions, then they
probably could care less if its user interface was easy to use. As long as
the expert system tested high on its primary requirements, then it would be
evaluated as performing well. As this example illustrates, the process of
aggregating all the different tests in order to reach an overall conclusion
about the expert system is inherent in the term "evaluation." One of the very
nice things about MAUA as a test and evaluation method is that it provides

explicit, defensible procedures for converting the test results on many

2-7

different criteria into one common scale; that is, it provides a method for

converting all the "apples and oranges" into a single overall evaluation.

We will briefly overview in Chapter 3 how MAUA procedures can be used tc
evaluate an expert system on the criteria shown in Table 2-1. We want to
close this first section, however, by again emphasizing that evaluation is
inherently a subjective process. Relative importance weights represent
personal judgments. There is no mechanical procedure that can replace this
fact or the use of other decision rules. Moreover, these judgments are
appropriately the province of the decision makers, or their representatives,
who are sponsoring the development of the expert system, &nd not the testers.
For it is the sponsors of the development effort that have to make the final
decision (i.e., evaluation) as to whether or not the expert system will
fulfill their needs. Sucl. a perspective is, of course, quite consistent with
the SHOR paradigm.

THE EXPERT SYSTEM DEVELOPMENT APPROACH

Perhaps the best way to begin a description of the expert system
development approach is to first present its counterpart, the "conventional"
system design approach. As Andriole (1989) points out, there are various
representations of the conventional approach. The one by Hice et al. (1978),
shown in Figure 2-1, is an excellent example because it emphasizes the
comprehensive, structured, and sequential nature of the conventional approach.
Its strength is its procedural comprehensiveness. Its weakness, however, is
its failure to extensively involve the user throughout the design process, and
its relative inflexibility, which is best illustrated by the lack of feedback
loops between the seven steps (and particularly the first two) in Figure 2-1.
It is important to note that this presumed weakness is not always a weakness;
it depends on the nature of the problem and tasks for which the system is
being developed. The conventional approach can be very effectively applied
when the problem and tasks are easily identified, defined, and structured. It
is only when such clarity is elusive that other approaches need to be consid-

ered by developers.

2-8

(¢ ybnoays | sdars)
ABojopoyiai watdolaaag waisAs s,'|¢ 12 99)H :1-Z 9inb)y

190434 NOIS3A AYYNIWITI¥d 30N00¥d ¥(°2 L8043 AONLS NOILINIZ3Q 30n00¥d L1174
NY1d NOILVINIWITAWI/INIWAO0TIAIC FuWdINd €172 W315AS Q350d0O¥d 30 SISATYNY
3¥YNLI0S WALSAS A4123d5 21°2 S1133K39-1SOI/NVId 1IVE3A0 J¥V4IAd OL°%
NOILYANDIINOD IdYNQUYH AJID3dS Li°2 SINIWIAINGIY 3INVLIMIIIV
SINIWI¥INDIY /NOISUIANGI/NOTLIVININITdW] 3NINY3IL3Q 6°1
SNOILVIINDWWO] VIVA 4413348 0Ol°2 HIVOYddY WILSAS 10313S/3LIVNIVAI 8°L
SINOINHIIL SSIIIV 3INE43CQ S3IHIVOUdAY TYIIN3104/SININININOIY
/38n1INYLS 3ISVEViva 1VI1907 NDIS3Ia 6°2 ALIVIOVEYD WILSAS INIWE3I3G L1
1¥0d3¥ N91S3G 1IV1II0 33NQ0YUd 67 € SY3Iuy SNOILINN
M¥Id 1S31 W3LSASANS 4013A30 8°%F W31908d ONIY¥IINIONT NVMOH A41LIN3CI 872 /SINANT/SINAING WILSAS A41D3dS 9°4 ,
SINTLINOA SINIHIYINDIY NOTLINTOS3Y ¥O4 SWILI/SNOILdRNSSY
NOWMO3/S3111111N JYYAL40S A4133dS Z°f NO1123408d W3LSAS A31J3dSs [2°2 /SINIVELISNOD/SIIYNOSIY INIWYILIA §°L
SIEVL/SINVHINOTY 21907 dOT3A3G 9°¢ SNOI1d1¥3S3Q $SS370¥d 4013A30 9°2 VI¥ILIYD 3ONYNN04¥3d
SWYEO0Nd WILSASENS 3INI43Q §°% SLNVHOMO T4 WILSASHNS/NILSAS JWVdI¥d S§°2 13S/S3AT133180 WILISAS d013A3G ¥°|
S3ANIVIAI NOI1LIFI08d WILSASENS NDIS3IA ¢ SINIWIYINDOIY IFDVIAILNI SNINGIIONM/SAONLIN ONILSIXI FTATYNY §°L
ASYEVLIVG TYI1SARd NOIS3IA §£°¢ /1ndiN0/INdNT N3LSASENS d013A3Q 9°2 $33NG300¥d o
S3IV4NILN! INdINO SHILSASEBNS IM[WISIC €°¢ /SGOHI3IW ONILISIXI MO Viva 1231702 27} %_
/1rdND ¥3INDWOD 7 SHYO4 TYNNVKW NDIS3a 2°¢ INIWNONIANT WILSAS TIVY¥3A0 3NI43G 2°2 34008
SAINAII0YUd NVWNH JOTIAIA | °§ SININIAINDIA NOISNVAXT NIISAS Ad1D3dS8 }°2 AONLS HSITEYIS3I/W3180Y¥d JHL 3INI43Q (71
/83 1 282
6’ h.m‘ w.m‘ c's £L :.N..n..w
[4 4
}'E

MIsS3a IVIA 0°¢ NO1S30 AUVRIWITIN 0°2 AQNLIS NOILINISZG O°L

(£ yBnoly; p sdag)
(panupiuo)) ABojopolialy Jawdojaaag weisAs 8,18 12 adIH -2 9unbi3

2-10

140434 SL1NS3¥ LS3L 30NA0Ed @°6
1531 3ONVLdIIIVY WHOI¥Is L7
W3ISAS/KILSASENS 1531 9°7
$3114 NOILOVSNVYL/3SYBYIVQ 1531 01Ing §°%
SIUN0II0UJ
NYNAH/SQIV JYOM/SISUNDD OMINIVEL 1S3 9°%
JINYNILINIVH/SNO! LVE3d0 303 SNVId TYNNNY INIWNCUIAN3 IWIL MY INIW¥IL3ZG €°¢
HS118V1SI 3 WILSAS 30 SNIVIS M3IA 8°L $3111112v4
ONINIVYL TYNOIL10OV W¥03¥3d 24 /3¥VAQYEVH TIVISNT % 311S 3Wvd3dd 2°§
NO11YIN3WN30Q 39NVHD $3¥NAAI0Ud/NVId 1S3L Q3NIvL30 dOTIAIA 17§
JLYNINISSIA/SLSINOIY JONVHD SS3D0¥d 9°4
SNVId ALI¥MD3S/10¥INOD Y31SVSIO NOLINOW §°/ NOTLIVINIWI1dRI/NOTSEIANDD
SIUNTIVE NNY WO¥4 ¥3A0DIW/INIAINE %L INZNNDOQ 7 WILSAS 33A0 N3NL B9
SNOTLV¥3IdO ¥3INdWO3 IINA3HIS €72 W3iSAS MIN/IYYML40S 1¥0d3¥
SASVL JIYROUYH NO WY3L JINVNILINIVH NIVNL L°9 N3NA0T13AIA SOF NVWNH/WYEDO¥d 3AVd34d B Y
ONIRWNYNDOSd/SISATYNY JONYN3INIVH JINC3HIS 274 N31SAS M3N ¥O3 ONINIVEL SWV¥90¥d BNB3C 'Y
SFOLVIIONT V311132 BOLINOW/4013A3Q 172 JININNDISSY I3NNOSHIC ¥ISN 1DNANDD 9°9 Y1VQ 9nB30 (3N00K) WYAD0Ud IAV4I¥d 977
W3ILSAS N3N SWY¥90¥d 319WISSY
NO NOILIVINIIMO LNIWIOVNVN LINGNOD §°9 7371dW0D % $XJ30 3I¥N0S 3WVdINd S°Y
SNGISH3ANGD ViVQ Wy0d¥3d %°9¢ SWYNO0¥d 3003 %'
W3LISAS M3IN ¥04 S3GIND JiITdNOD £°9 SL¥VHIMOTd WYNDONd 0311VL30 dO13A30 §°*
\ ot W34iSAS MIN/IYYNLI0S/IWVMOUVH SINIWI¥INO3N
NO T1INNOS¥3d SNOILVN3JO NIVdL 2°9 TYANIWNOUTANI/ 1INNOSHIS HSITEYLISI 277
37NQ3HIS/NV1d T081NOD SKILSASENS TINNOSHId ¥O4
\ FAS A NOI1VINIWITIWI/NOISHIANOD HSINEVISA |79 SNOILdI¥ISIE NOILISOd IZISIKINAS L™
\ 9L
~ S / \ll.l]/«.n \.\v“
. YL e.e. L9 _.n.a.eﬂn.v- 'y v..‘. £
.
€L
L s ‘ e
e

NOIIVINIGE ML NIISAS INIMI0I3A3C 8Or
TINVNILNIVE 3 NOLLVEIDO WBLISAS 072 /N01S¥3IANGD Viva 079 guILSIL 07§ NVWS % WYE20Nd Q7Y

Clarity of problem and task definition and, most importantly, structure,
is typically elusive when starting an expert system development effort. The
reason is that expert knowledge and reasoning represents the essential task
structure of an expert system, and this is difficult to define and understand
at the start of the development effort. To quote Harmon et al. (1988), "It's
not that experts will not explain what they do, it’s that they can’t.
Knowledge engineers must work patiently through a discovery process with human
experts to develop and then enhance the system. No neat phases result in
products that will not be reconsidered in subsequent phases. The original
rules the knowledge engineers develop may later be rewritten entirely or
dropped, as the experts and knowledge engineers gradually refine their
understanding of the knowledge that must gc into the knowledge base." To
quote Cholawsky (1988, p. 42), "The conventional wisdom about this process is
that expert systems development is necessarily an experimental process." It
is one that emphasizes iteration, test and evaluation, and subsequent refine-

ment.

For the above reasons, expert system developers and theoreticians have
emphasized the application of prototyping methods with corresponding changes
in the development process., The purpose of prototyping is to quickly develop
a working model of the expert system and get the expert’'s and user's reaction
to it in order to find out if the development process is on track. To quote
Cholawsky (1988, p. 42), "Application is quickly followed by some initial
prototyping effort. The prototype often serves as a combined feasibility
study, design document, and functional specification effort. As the problem
area becomes better understood, more involved prototype efforts are undertaken
with more complex implementation, testing, and evaluation. The development
team iteratively enhances each prototype until an operational system evolves,
In the final development phase, the team is challenged to maintain and enhance
end results of the prototyping efforts, transforming the mature prototype into

an operational system."

Figure 2-2 presents Cholawsky's (1988, p. 44) representation of the
"traditional expert system development methodology."

2-11

APPLICATION SELECTION

Y
™ PROTOTYPE EFFORTS

¢ IMPLEMENT
e TEST

o EVALUATE
e [TERATE

l

L] MAINTENANCE & ENHANCEMENT

Figure 2-2: Cholawsky's (1988) Representation
of the Traditional Expert System Development Methodology

Figure 2-3 presents Harmon et al.’s (1988) representation of the approach. As
can be seen, Harmon et al. emphasize the constant interaction with the experts
and users that is inherent in the prototyping approach. Constant interaction
with users during prototyping is just as important as constant interaction
with experts for two reasons. First, "users don’t know what they want or
need, but they do know what they like." And, second, "it is a lot easier to
answer the question 'How do you like X?’ than to answer the question ‘How
would you like X?'" (Hurst et al., 1983, p. 128). These reasons hold even
when the participating expert is the designated user of the expert system.
Consequently, in contrast to the conventional development approach, proto-
typing greatly expands the users’ involvement in the development process by
putting them in the explicit role of evaluating actual working representations
of the expert system, and indicating how they should be modified, throughout

development.

2-12

ANALYZE PROBLEM —
DEVELOP PROTOTYPE
INTERACT
WITH
TEST WITH CASES = - USERS
AND
EXPERTS
EXPAND SYSTEM - -
TEST WITH CASES | ——
INSTALLATION
MAINTENANCE

Figure 2-3: Harmon et al.’s (1988) Representation
of the Traditional Expert System Development Methodology

In the past, expert system developers have been prone to taking a "we
versus they" attitude when comparing their system development approach to the
more conventional one. However, as we mentioned in Chapter 1, that is
beginning to change because, for all its strengths, expert system development
efforts emphasizing a totally "experimental" prototyping approach have not
been as successful as we would like to believe. There have been too many
failures because expert system developers have failed to consider the require-
ments issues of critical concern to sponsors. To quote Cholawsky (1988, p.
44), "In general, prototypes ignore both deployment issues (such as cost-
benefit analysis, scaling up to operational size, and handling real-world
data) and transition issues. ... The development team argues that business
issues should be temporarily tabled; if the problem cannot be solved techni-
cally, it does not matter if it is justified from a business sense. This

argument has a fatal flaw. Even if the life underwriting decisions of the

2-13

expert system exactly match the underwriter, the system will not be built if
it lacks an adequate payback.” Furthermore, Constantine and Ulvila (in press)
have found a number of cases where the development cycle was to "prototype

forever," never reaching an operational system.

As we mentioned earlier, a more requirements-driven development process
is evolving. This process emphasizes the importance of prototype planning
that explicitly identifies objectives and evaluation criteria for determining
prototype success prior to development as a means of keeping development on
track. In addition, it emphasizes conventional software design activities,
not just knowledge engineering. These design activities provide a structured
approach for addressing, during prototype development, many of the deployment
and transition issues that have been a problem for successful prototype

implementation.

Figure 2-4 presents Cholawsky’s (1988, p. 47) "new approach to expert
system development." Her approach divides protdtyping activities into two
groups. The first group emphasizes prototype planning. It includes specify-
ing the objectives and secondary issues (i.e., subproblems) for the prototype,
the evaluation criteria for "determin[ing] prototype success," and a develop-
ment schedule with milestones and deliverables. The second group emphasizes
prototype development. It includes a predesign stage for understanding the
domain vocabulary, a logical architectural design stage for analyzing the
reasoning and representation paradigms used in the domain, a physical ar-
chitectural design stage for considering hardware and software issues, an
implementation stage for programming the knowledge engineered during the
logical architectural design stage, and an evaluation stage for explicitly
testing the prototype against the evaluation criteria specified during
planning. Iteration is assumed throughout the various stages, although it is
more controlled than in the traditional prototyping approach. Assuming that a
successful prototype is developed, efforts are then directed toward developing

the operational system, and maintaining and enhancing it.
Cholawsky is not alone in proposing an expert system development

approach that moves toward integrating aspects of the more conven:tional syste:

development approach into prototyping. Figure 2-5 presents Weitzel and

2-14

APPLICATION SELECTION

\
PROTOTYPE PLANNING

o Objectives

e Sub-probiems

e Evaluation criteria

e Schedule and milestones

:

PROTOTYPE DEVELOPMENT

e Pre-design

e Logical architectural design
8 Physical architectura! design
¢ Implementation

e Evaluation

OPERATIONAL SYSTEM
DEVELOPMENT

l

MAINTENANCE & ENHANCEMENT

Figure 2-4: Cholawsky's (1988) "New" Approach
to Expert System Development

2-15

IDENTIFY PROBLEM
DEFINITION/FEASIBILITY [
Redefine
IDENTIFY SUBPROBLEMS [
Redefine
IDENTIFY CONCEPTS —
Redefine
| CONCEPTUAL DESIGN [_—
Refine
- DETAIL DESIGN
Refine
- CODE
Refine TEST REASONING
Refine TEST KNOWLEDGE |hestucture
Restructure
Refine VALIDATION Redefine
CONVERT
New Problem
MAINTAIN & ENHANCE | !dentification

Figure 2-5: Weitzel and Kerschberg'’s (1989)
Representation of the "Knowledge-Based
System Development Methodology Flow™

2-16

Kerschberg’s (1989, p. 599) "knowledge-based system development methodology
flow." Although their approach emphasizes iteration, it also emphasizes
conceptual and detailed design prior to coding, as well as substantial testing
and evaluation. Figure 2-6 preseats Rook and Croghan's (1989, p. 589)
"knowledge acquisition activity matrix." As can be seen, they have tried to
integrate the various knowledge-engineering activities with the steps in the
conventional system development cycle in an effort to move effectively and
efficiently from the laboratory to the operational environment. And Figure
2-7 presents Andriole’s (1989, p. 31) "prototyping design blueprint."
Although his approach emphasizes modeling and iteration, it also emphasizes
aspects of the more conventional system development approach, particularly
requirements analysis, hardware and software selection, and system design,

packaging, transfer, and evaluation.

Figure 2-8 presents Wolfgram et al.’s (1987, p. 17) "stages of expert
system development." This representation is quite similar conceptually to
Cholawsky's (1988). First, Wolfgram et al. also distinguish between prototype
planning and development. Planning issues, such as the specification of goals
(i1.e., objectives and subproblems), evaluation criteria, and explicit require-
ments for guiding development, are part of Identification and Definition, the
first stage in their development approach. Second, prototype development and
construction of the operational version of the expert system are distinctly
different stages of development-—stages 2 and 3, respectively. Moreover,
prototype development in Wolfgram et al's approach incorporates many of the
same requirements and design issues Cholawsky addresses in her approach. All
of the issues are directed toward designing the "structure" for the operation-

al version of the system.

Regardless of the various representations of the expert system develop-
ment approach, test and evaluation is an inherent aspect of {t. 1Ia fact, test
and evaluation activities are assumed; they are simply taken for granted as
part of iterative development. Consider Wolfgram et al. (1987, p. 19), for
example. "Once the prototype is in place, it is a working model, or submodel,
of the planned complete expert system. It is at this stage that, after
careful testing and review, a decision is made whether to continue the project

and construct the complete expert system or abandon the project.” Testing and

2-17

L] 1]
1 1
/ Vo
! HE OPERATIONAL ENVIRONMENT
i Co
 ammmmmem g emceeomnenne
:' EI" ﬁ :
Pt 5‘ SIMULATED OPERATIONAL ENVIRONMENT
¥ {
f" : e == - - - - :L : -------------
RIS PAVS
4
e L - LABORATORY ENVIRONMENT
e v d :
s AT : :
’, /’ : : ’ ’ y ’ ’ ’
p S P S PROBLEM DEFINITION
” ’ : R il dad P A .
g : ¢ ’ ’o s~ EQUIREMENTS ANALYSIS
o A e e REQUIRE
. s o) FUNCTIONAL SPECIFICATION
, A S S S AL A,
‘ A SYSTEM DESIGN
I’ --.(J:--;J---+.--7L---'.J._-.;l-_-
4
‘ A X SYSTEM DEVELOPMENT
e v St e A
. . TEST AND EVALUATION
--_,,c---—‘--.I'-..«’«»a-:ﬁ-—-’y.--
S A ‘ ’ SYSTEM MAINTENANCE
58 UE YB 85 UE ¥E &2
S 55 5E 53 o B og
§3 25 32 3 3% 2T 32
L U -4 - X - Er— X W
T - I M MM M 3
I gb— w o w x
wd = O < O 5
Ja aw g o o
o WL (¥ M
W ol ; —
b 3 x
3 =
= b
k¥4

Figure 2-6;: Rook and Croghan’s (1989) *Knowledge Acquisition Activity Matrix*

jupadamg ubisag Buydfioiosd daig-aulN s.djoppuy 12z aanbi4

«JHNSO10.
AHOLVdIOUHVYI/ANIWNSSISSY NOLLYN VAT

NOILD3 13S OIYVNIOS/INIWDO13AIA
VIU31IHO/NOILYIIFIDIHS QOHLINW/ V0D

NOLLOFT3S QOHLIN
INIWIOVYNVIN FONVHO/LNIWNSSISSY NOLLYNLIS

ONINIVHL LHOddNS/NOLLYAN3IWNO0a

NDIS3Q 20V4H3INI SNIHOVIN-NYWN
/NOLLOTI3S 30IA30/INDINO AVdSIA
/LNdNI/NOLLYHNDIINOO/NOLLOF IS W3LSAS

ONIHIINIDONI SUVMLIOS NOIS3a 1NdiNo
IAV1dS'O/LNANYINIWSSASSY S13HS IHL 340

ALNIGUYINOD SININIHINOD3Y
/NOSIHYdNOD LI43INTB-LSOO/ININSSISSY

ONIGBYOSAHOLS/ONITHYHO-MOT4/IALLYHEYN

XIHLVIN 3NIYLOOG- TYNOUYZINVOUHOMSY WIS
/INIWSSISSY INIVHISNOD/ALIMIBISYS

SIHLIALLOY

-

Novaa3asd L.b

NOLLYNTVAT WILSAS ool «ff- -
HIISNVHL WILSAS L.A 4
ONIDVIOVA WALSAS L& Y

2-19

I

NOLLO3N3S IUVMAEVH

NOLLYHNOIINOD/ L

NOSIS3/NOWOTIS
IHYMLIOS
<4
NOLLDS13S SAOHLIN l\lw
<

VVVVVVYYY

ONM3QON
SISATYNY
SININ3HINO3Y

$dals

|

Identification o Resources
snd o Gosis
Definition o Criteria
Requirements * 2
o Knowledge Discavery
c Deveiopment | o Mets-knowiedge
2 ot o Problem-solving
s Prototype o Hardwars/Software Setection
S Suw«m‘ ¢ identification of Constraints
€ 3
§ o Knowiedge Acquisilion
e} 2 Corsiruction » Knowledge Base Fabrication
i o Detalled Knowiedge Structure
e Formullllonl <
E Testing
and e Validation
Execution 5
Integtation * Op lonal Accep
shd o Education
implementation | e Training
Operstion ‘ R
o Dynamic Environment
Maintenance o Domain Expansion
o Heuristic improvement

Figure 2-8: Wolfgram et al’s (1987) "Stages of Expert System Development”

2-20

evaluation are the critical activities upon which the fate of the project
rests, yet Wolfgram et al. fail to indicate its presence in their pictorial

representation of the development process.

Figure 2-9 presents a revised version of Wolfgram et al.'s representa-
tion of the expert system development process, but now with testing and
evaluation explicitly added to the process. In particular, we have added test
and evaluation boxes after prototype development (stage 2), integration and
implementation (stage 5), and maintenance (stage 5). Testing and evaluation
obviously occurs at the end of each of these development stages. For example,
in addition to testing and evaluating the prototype, one would obviously test
and evaluate the operational version of the expert system (stage 5); one does
not simply hand it over to the host organization and walk away from it after
so much time and money has been spent in developing it. Similarly, one tests
the effects of any changes that one makes to the system during maintenance for

fear that an enhancement might result in an unanticipated error or problem

All this test and evaluation goes on informally in most expert system
development efforts. 1Indeed, informal test and evaluation is a pervasive
activity in development. Webster’'s dictionary (1966) uses the word "examine"
as part of its definition of both "test" and "evaluate."” As developers, we
are always examining the system. We’re always trying to find things here and

fix problems there in order to improve our product.

The reason we have added the test and evaluation boxes to the development
approach is to formalize that activity. Moreover, good test and evaluation is
not epitomized by the informal examination of the system. It is epitomized by
the use of explicit and appropriate methods for helping members of the
development and sponsoring teams make the numerous judgments and decisions
inherent in expert system development. Remember, test and evaluation repre-
sents the control mechanism for providing the feedback that keeps the develop-
ment effort on trac. This point is clearly illustrated in Andriole’'s (1989)
prototyping design blueprint, Figure 2-7. The ultimate goal of test and
evaluation is to help senior-level decision makers in an organization decide
whether the option of developing and implementing an expert system, elther

singularly or in combination with other actions, is an effective organization-

2-21

RE-IDENTIFICATION

|

S IDENTIFICATION & DEFINITION
Requirements 1 2
@ - DEVELOPMENT OF PROTOTYPE
o
§ 1 2a
=
&
vt TESTING & EVALUATION
Structurel 3
g CONSTRUCTION
£
2 Formulation ‘ 4
)]
o
— TESTING & EVALUATION
Execution ; 5
o INTEGRATION & IMPLEMENTATION
2
§ 1 5a
<]
[+ o
| — TESTING & EVALUATION
Operationw 6
."é.’ MAINTENANCE
: !
Q
£
©
I
e TESTING & EVALUATION

Figure 2-9: Modification of Wolfgram et al.'s Representation
in Order to Emphasize Test and Evaluation

2-22

al response for dealing with their present or future problem environment.

Once the development process is underway, the application of formal test and
evaluation methods permit one to monitor the perceived utility of the expert
system under development, and take corrective action to increase the probabil-

ity of its use and effectiveness.

At this point the reader may be thinking that emphasizing formal tests
and evaluations will increase development costs. In fact, it might. Formal
testing and evaluation is an expensive process. Although we do not have data
for expert systems, Hetzel (1984) points out that direct testing costs for
major software systems approach 25 percent of the development costs. Direct
testing costs include reviews, program testing, systems testing, acceptance
testing, test planning and design, computer time, and test resources, both
human and material. This is obviously not a trivial investment. To quote
Gould and Lewis (1985, p. 306), "... testing still has a price. It is nowhere
nearly as high as commonly supposed, however, and it is a mistake to imagine
that one can save by not paying this price. ... If it is not done in the

developer’s lab, it will be done in the customer's office."

The failure to systematically test and evaluate a system during its
development oftcn results in "indirect costs,” as Hetzel (p. 174) calls them.
Indirect costs include "rewriting programs, recovery, corrective actlon costs,
rekeying data, failures, analysis meetings, debugging, retesting," etc.
"Indirect testing costs, or the costs of poor testing, are usually at least
twice the direct costs and may be spectacularly higher.” Moreover, indirect
testing costs are substantially more expensive later in development. For
example, empirical research (e.g., Rushby, 1988) indicates that errors due to
faulty requirements are between ten to one hundred times more expensive to fix
if detected during implementation than during requirements analysis. Given
our track record, there is no reason to assume that these estimates are any
different for expert systems. Of course, these costs pale by comparison to
the potential costs of a catastrophic decision or even the costs of a system
that is ignored or unused because of correctable problems that could have been
detected by testing. All of this suggests that formally incorporating test

and evaluation into development is a wise investment.

2-23

SUBJECTIVE, TECHNICAL, AND EMPIRICAL TEST AND EVALUATION METHODS: AN OVERVIEW .

We now overview the various subjective, technical, and empirical test
and evaluation methods. The methods will be discussed only at a general level
here. More detailed discussions and illustrations will be presented in later

chapters.

Subjective Test and Evaluation Methods

The goal of subjective tests and evaluations is to assess the expert
system from the perspective of potential users and sponsors. This is accom-
plished by identifying measures of effectiveness (MOEs) that will provide the
information required to assess the system’s utility. The explicit identifica-
tion of MOEs is particularly important at the beginning of the development
process because they represent (a) reference points for the development team
to use, and (b) criteria for evaluators to monitor in order to assess whether

the development process is on track.

Gaschnig et al. (1983, p. 258) have emphasized the importance of .
developing MOEs early in the expert system development process. "It s
important for system designers to be clear about the nature of their motiva-
tions for building an expert system. The long-range goals must also be
outlined explicitly. Thus stage 1 of a system’s development, the initial
design, should be accompanied by explicit statements of what the measures of
the program’s success will be and how failure or success will be evaluated
[italics theirs]. It is not uncommon for system designers to ignore this
issue at the ottset, since the initial challenges appear so great upon
consideration of the decision-making task that their expert system will have
to undertake. If the evaluation stages and long-range goals are explicitly
stated, however, they will necessarily have an impact on the early design of

the expert system."

Multiattribute Utility Assessment. Riledel and Pitz (1986, p. 986), as
well as others (e.g., Adelman and Donnell, 1986; Andriole, 1989; Keeney and
Raiffa, 1976; Ulvila et al., 1987), have pointed out that multiattribute
utility assessment (MAUA) "... provides a formal structure for conseptualizing .

2-24

MOEs, a mechanism for both decomposing the global MOE into its component
dimensions and for reintegrating them to yield one summary measure of value."
When applying MAUA to the evaluation of expert systems and other types of DSS,
the system is conceptually decomposed into attributes that can be defined well
enough so that one can obtain either subjective or objective measures (MOEs)
of how well the system performs on each attribute. This decomposition
typically proceeds through the creation of a value hierarchy, such that the
global attribute entitled "the overall utility" is decomposed into major
categories of attributes, which are further decomposed, and so forth, until
one is reasonably confident that one can define and obtain precise, reliable,
and valid measures (or scores) of the system on each attribute. Table 2-1

presents the MAUA value hierarchy developed by Adelman and Ulvila (in press).

Reintegration typically occurs within MAUA through the application of
utility functions and relative importance weights. An expert system is
usually evaluated on many different attributes, all of which need to be
defined as precisely as possible. The natural measurement scale for an
attribute depends on the nature of the attribute. For example, the scale for
an attribute could be in objective units (e.g., minutes for time) or subjec-
tive units (e.g., how strongly a subject likes a feature) depending on the
attribute. Nevertheless, a common scale is required to compare scores on one
attribute with scores on another-—that is, "apples with oranges"—-and, by so

doing, obtain an overall score for the system.

A utility scale, which conceptually measures psychological value or
satisfaction, m«ets this requirement. Utility (or value) functions are used
to translate system performance on an attribute into a utility score on that
attribute. Then, relative importance weights (or other forms of decision
rules) are used to assess the relative value of a utility score on one
attribute with the utility score on another and, thereby, obtain an overall
utility score for the system. [This weighting procedure is formally valid if
additivity assumptions are met; see Keeney and Raiffa (1976). An assumption

of additivity is generally a reasonable approximation; see Edwards (1977).]

MAUA was used to provide the subjective evaluation of DART described in

Chapter 1. As you will remember, "decomposition" was illustrated in Table 1-

2-25

1, which presented a multiattributed hierarchy that decomposed the global MOE
(the overall utility of the expert system) into three component dimensions:
the user/expert system, user-system/decision making organization, and or-
ganization/environment interfaces. Each of these three interfaces or branches
in the MAUA hierarchy, were further decomposed into bottom-level attributes
(or MOEs).

"Reintegration" was achieved by a three-step procedure. First, the
experts completed a questionnaire that essentially scored DART on each of the
bottom-level attributes. Second, we assumed a positive linear utility
function for each bottom-level attribute, thereby conceptually converting the
performance score on the attribute into a utility score on that attribute.
And, third, we used equal weights moving up the hierarchy to combine the
(utility) scores for lower-level attributes into more global scores at the
next level of the hierarchy until we obtained an overall score on the global
MOE.

The Dollar-Equivalent Technique. The dollar-equivalent method is a
means for translating all benefits, as well as costs, into dollar values
instead of utilities, as in MAUA. In the dollar-equivalent method, all
benefits are converted into dollar equivalents by “pricing out." Pricing out
is a judgmental technique that is much the same as the procedure for convert-
ing performance scores into utility scores in MAUA. As Huber (1980, p. 83)
points out, the dollar-equivalent method is "... a special case of the more
general ... MAU model technique." Consequently, the appropriateness of the
method depends on the defensibility of the conversions to monetary equiva-
lents. Relatedly, traditional cost-benefit analysis represents all benefits
and costs Iin dollars, and then uses the ratio of benefits to costs as the

basis for decision making.

Decision Tree Analysis. Decision tree analysis is a formal method for
combining uncertainties, which are represented as probabilities, with util-
ities when evaluating alternative decision options. Decision tree analysis
often uses subjective probabilities of scenarios to represent, at a collecti- -
level, the uncertainties inherent in the decision-making situation facing

members of the sponsoring team. These scenarios represent the members’

2-26

hypothesas regarding alternative states of the world, a perspective that is
perfectly consistent with the SHOR paradigm. The overall expected utility of
different organizational options, including whether or not to develop an
expert system, depends on the (a) probabilities assigned to the various
scenarios, and (b) the utility of each of the options for each of the sce-

narios.

Other Subjective Test and Evaluation Methods. A fourth subjective
method is a MAUA-based cost-benefit analysis that uses optimization procedures
to identify the set of options that provides the greatest utility at specific
(total) levels of cost (see Ulvila and Chinnis, in press). As Adelman (1990b)
pointed out, this approach is particularly appropriate when the funding
horizon is uncertain for identifying the best (a) set (or suite) of decision
support technology (and/or other organizaticnal options), and (b) configura-
tion of components for a particular system at different levels of dollar cost.
For example, Rockmore et al. (1982) used this approach to select DART and four
other decision support systems for enhancing U.S. Air Force tactical decision
making., However, to the best of our knowledge, this subjective method has not

been used to evaluate potential expert systems.

Although we will not describe them here, there are other subjective
evaluation methods that have been used to test and evaluate expert systems.
For example, Liebowitz (1986) has used the Analytical Hierarchy Process
developed by Saaty (1980), Tong et al. (1987) have proposed a frame-based
approach, and Klein and Brezovic (1988) and Slagle and Wick (1988) have used
subjective test and evaluation approaches analogous to MAUA. The interested

reader is urged to consider them.

Discussion. An important characteristic in common among the subjective
test and evaluation methods described herein is that they develop an analyti-
cal model to represent the judgments of the participating decision makers.

One of the principal advantages of a "model" is that it permits sensitivity
analysis; members of the sponsoring team can change their judgments and see if
the changes have any effect on the results. For example, does changing the
relative importance placed on an attribute (e.g., response time) in a MAUA

suggest that a different alternative design for the expert system be imple-

2-27

mented? This is an important capability early in the expert system develop-
ment process because, consistent with the SHOR paradigm, there may exist
considerable interpersonal disagreement among members of the sponsoring team
dua to both information input uncertainty regarding the hypotheses and

consequence-of-action uncertainty regarding options.

Moreovef. both the MOEs and methods used to convert performance measures
into MOEs developed early in the development process will be used during and
after development to evaluate the prototypes and final expert system, respec-
ctively. "1 that will change with time is basis for these judgments, both in
terms of the specificity of the option (i.e., the expert system) and, for
certain MOEs, t..» availability of empirical and technical performance data.
Consequently, it is important to obtain consensus among the sponsoring team,
which, it is assumed here, includes representative user(s) of the expert
system, early in (if not prior to)} the development process. To quote O’Connor
(1989, p. 103), "These attribute trade-offs are not after-the-fact evaluation
issues. Rather, they are decision issues relevant to the design problem and

should be resolved before detailed system design and testing take place."

There is a long line of research (for a review, see Delbecq et al.,
1975) demonstrating that, more often than not, structured facilitation
procedures can focus a group’s discussion, thereby increasing the probability,
not only of a more accurate final position, but one that is more strongly
supported by the group. The subjective methods described above further
improve discussion by letting members of the sponsoring team focus on a
quantitative model instead of each other. Eils and John (1980), for example,
found that groups using MAUA procedures in conjunction with group facilitation
procedures tended to make more accurate decisions than groups using only

facilitation procedures.

Better discussion occurs because group members have to define their
thought processes in order to provide the numerical inputs required by the
model. At the same time, however, the model permits group members to retreat
from their original position, or more strongly voice it, on the basis of the
numerical outputs and sensitivity analyses. Directing the discussion toward

aspects of the model helps remove some of the "personal” focus of group

2-28

decision making. As was mentioned earlier, explicit identification of MOEs
and procedures for converting performance scores into a global MOE, represent
reference points for the development team to use when developing the expert
system, and criteria for the evaluator to monitor in order to assess whether

the development process is on track.

The above discussion has focused on the applicability of subjective test
and evaluation methods early in development in order to define (a) what the
expert system has to be capable of doing in order for the decision maker who
is using it to consider it to be a good system, and (b) whether development of
such an expert system 1s feasible given the financial, time, personnel, and
other constraints operating in the situation. However, subjective test and
evaluation methods are applicable throughout the development effort. The
reader should remember that subjective methods like MAUA, cost-benefit
analysis, decision analysis, and the different variations on these themes were
all developed to help decision makers systematically evaluate decision
options, regardless of what they might be. Consequently, they are potentially
applicable anywhere in the development process where members of the develop-
ment team need to evaluate one option against another. 1In those areas
important enough to warrant their use, they represent an audit trail for

indicating why one action was taken versus another.

Finally, we have tried to stress the importance of using subjective test
and evaluation methods to evaluate whether the prototype(s) and final,
operational version of the expert system are consistent with the initial goals
and objectives of the sponsoring team. It is important to point out that
objectives, and particularly the tradeoffs among them, can change during the
course of the development process either because of the changing environment
with which the sponsoring team is dealing, changes in the membership of the
sponsoring team, the insights gained during the development process regarding
what is technically feasible/infeasible, etc. Subjective evaluation methods
provide an effective mechanism for representing these changes and, through
sensitivity analysis, estimating their implications for the development

process.

2-29

and Evaluatio e

Three classes of technical evaluation methods are, in turn, briefly
overviewed in this chapter: (a) static testing for assessing the logical
consistency and adequacy of the knowledge base; (b) using domain experts for
assessing the functional completeness and predictive accuracy of the knowledge
base; and (c) conventional software test and verification methods for assess-

ing the service requirements of the entire system.

Logical Consistency and Completeness. As Rushby (1988) points out, the
concepts of static testing in conventional software testing can be readily
extended to expert systems because, in both instances, the focus is on
detecting anomalies in the program without actually executing it on test
cases. To quote Rushby (p. 92), "An anomaly in a program is nothing more than
an apparent conflict between one indication of intent or purpose and another

." The types of anomalies of particular interest in expert systems pertain

to the logical consistency and logical completeness of the knowledge base.

Researchers (e.g., Kirk and Murray, 1988; Nazareth, 1989; and Rushby,
1988) have developed taxonomies of anomalies in the knowledge base that are
amenable to static testing. Some of these anomalies are listed below. In
doing so, we assume that the knowledge base is represented in the form of "if-
then" production rules or can be transformed into such a representation. As
Nazareth (1989, p. 257) points out, "For systems that employ more involved
representation schemes, the nature of the verification task may differ.”
(However, Hayes (1981) has shown the consistency between rules and frames,
which indicates that similar concepts are applicable to frame-based kaowledge
representation.)
» Redundant Rules. Individual rules or groups of rules that essen-
tially have the same conditions and conclusions.
. Subsumed Rules. When one rule’s (or rule group's) meaaing is
already expressed in another'’s that reaches the same conclusion

from similar but less restrictive conditions.

. Conflicting Rules. Rules (or groups of rules) that use the sanec
(or very similar) conditions, but result in differant conclusione,

2-30

or rules whose combination violates principles of logic (e.g.,
transitivity).

. Circular Rules. Rules that lead one back to an initial (or
intermediate) condition(s) instead of a conclusion.

. Unnecessary If Conditions. Values on a condition that do not
affect the conclusion of any rule.

. Unreferenced Attribute Values. Values on a condition that are not
defined; consequently, their occurrence cannot result in a conclu-
sion.

) Illegal Attribute Values. Values on a condition that are outside

the acceptable set of values for that condition.

. Unreachable Conclusion (and Dead Ends). Rules that do not connect
input conditions with output conclusions.

Static testing for the above anomalies could be performed manually for
small, well-structured knowledge bases. For even moderately sized knowledge
bases, however, this approach is precluded by the amount of effort required
and the probability of disagreements among testers. Consequently, researchers
(e.g., Culbert and Savely, 1988; Franklin et al., 1988; Nguyen et al., 1987;
Stachowitz et al., 1988) have begun developing automated static testers, We
do not have the space here to discuss these different efforts. However, we do
want to caution the reader that automated static testers are not without their
limitations. To quote Nazareth (1989, pp. 265-266), "In most cases the
verification process is closely dependent on the structure of the problem
domain, making translation of principles to other systems difficult. Addi-
tionally, only a subset of the errors identified [above] are covered. ... The
expansion of verification scope has serious implications for detection.

[And] the majority are directed toward applications without uncertain in-
ference.” Nevertheless, automated static testers represent a major step
forward in assessing the logical consistency and completeness of a knowledge
base., Unfortunately, such static testeis are not available commercially, nor

are there plans to make static testers available in the near future.

Functional Completeness and Predictive Accuracy. By functional com-
pleteness we mean to address the range of domain-oriented questions, such as
whether the knowledge basa contains all desired input conditions and output

conclusions, or even "knows" its knowledge limitations. Some of these

2-31

questions can be answered by domain references., However, the level of domain
expertise typically desired for expert systems is typically not codified in

such references. Indeed, Davis (1989) has argued that one of the major

contributions of expert system technology is the organization and codificaticnr

impacts it has on various disciplines. Consequently, domain experts are
typically required to evaluate the functional completeness of the system.
However, one should remember that the system’s level of functional complete-
ness depends on its stage of development and, most importantly, the domain

requirements resulting from the requirements analysis (step 1).

The predictive accuracy of the knowledge base pertains to the correct-
ness by which the rules (or whatever representation scheme) relates input
conditions to output conclusions. Such an assessment is essential for expert
systems, for "garbage in" is literally "garbage out."” Consequently, experts,
both those who participated in development and particularly those acting as
independent evaluators, should be used to evaluate the predictive accuracy,
and thus adequacy, of the knowledge base. Expert evaluation typically
proceeds in two ways: through examination of the knowledge base and the

evaluation of test cases.

Expert examination of the knowledge base typically focuses on whether
the system exhibits "correct reasoning." The obvious concern is, of course,
that the knowledge base not have mistakes., However, another concern, and one
which Gaschnig et al. (1983) pointed out is not shared by all developers, is
whether their programs reach decisions like human experts do. Many psycholo-
gists have long argued that this concern can not be answered for one cannot
look inside an expert’s head to obtain the "correct reasoning." Instead, all
one can do is build "paramorphic models" (Hoffman, 1960) of the reasoning
process, and evaluate their predictive accuracy against test cases. Indeed,
researchers (e.g., Dawes and Corrigan, 1974; Einhorn and Hogarth, 1975; Levi,
1989; Stewart et al., 1988) have shown that simple linear models can often
result in prediction as good as that achieved by the far more complex models

found in expert systems, or even by the experts themselves.

As Lehner and Adelman (in press) point out in their review of the

Iiterature, this is not a resolved issue. To quote Gaschnig et al. (1983. p.

2-32

255), "... there is an increasing realization that expert-level performance
may require heightened attention to the mechanisms by which human experts
actually solve the problems for which the expert systems are typically built."
In addition, Adelman, Rook, and Lehner (1985) found that domain experts’
judgments of the utility of decision support system (including expert system)
prototypes were signif{icantly affected by the match between how they and the
system attempted to solve the problem. This suggests that, at a minimum, the
systen’s representation and presentation scheme needs to be reviewed,

However, if the principal objective is to develop a system that maximizes
predictive performance, then simple linear models, or mathematical wodels
unrepresentative of how the experts solve the problem, may be more appropriate

than models of human experts in certain situations.

The predictive accuracy of the knowledge base is assessed using test
cases and performance standards. The desired standard is ground truth; that
is, the unambiguously correct answers to the test cases. Correct answers are
most desirable because substantial research (e.g., see Ebert and Kruse, 1978;
Goldberg, 1970; Yu et al., 1979) has shown that experts do not always make
perfect Inferences and, in fact, often disagree with one another in the kinds
of complex domains for which many expert systems are developed. Often, buz
not always, it is inappropriate to expect better predictive accuracy from the
system than the expert. (This may not be the case where the system incor-
porates knowledge from a limited, well-defined domain—sucia as a procedure
manual-—or where the system represents the expertise of several experts.
Here, it may be appropriate to expect the system to be more accurate than any
given expert. Also, Brian Smith points out that "we already ask machines to
do things that people don’t do," such as land ar ai.plane in fog, and that in
many serious applications the standard of doing as well as a human is not good
enough (Davis, 1989).)

If ground truth measures exist, one can try to discriminate between
"accuracy" and "bias" in a signal detection sense (Lehner, 1989). Accuracy
refers to the degree of overlap in the distributions of belief values when the
hypothesis is true versus false. Bias refers to the proportion of false
negatives (hypothesis true, but user says false) to false positives (hy-

pothesis false, but user says true).

2-33

If the correct answers do not exist or, for whatever reason, are inap-
propriate for the tes. cases, then one must rely on the judgment of an expert
or the consensus judgment of a group of experts. Considerable care must be
given to structuring the experts’ activities. In particular, the evaluation
team must ensure that the experts are ">lind" as to whether the system or
other experts generated the conclusions to the test cases. This is typically

referred to as a "Turing test” (e.g., see Rushty, 1988).

In closing this subsection, it is important to note that test case
construction is an important issue. To quote O’'Keefe et al. (1987, p. 83),
"The issue is not the number of test cases, it is the coverage of test
cases—that is, how well they reflect the input domain. The input domain is
the population of permissible input ..." [italics tteirs). The required
coverage capabilities is clearly a statement that needs to be a result of the
requirements analysis. For as O'Keefe et al. point out, developers frequently
devote a disproportionate amount of time to attempting to ensure tha. the
system can handle the truly "expert" cases that may occur very infrequently.
Moreover, these "infrequent® cases often become the test cases. This may or
may not be appropriate depending on the requirements for the system, and it

can certainly be expensive.

An alternative identified by O'Keefe et al. is to randomly select test
cases using a stratified sampling scheme such that the relative frequency of
the cases is representative »f those in the operational environment or
stipulated Iin the requirements. Addicionally. test cases should be chosen to
cover situations where a failure in the syslem would be especiclly serious.
It is also important that some ol =he test ~ases simulate the most ccmmon
operation of the system. Finally, Lehner and Ulvila (1989) have shown that
the number and type of test cc.es depend ¢n “he level of cvxpert sy. cem
performance that users cons.de to be valuable. The greater the difference
bk -ween the average leels of predictive accuracy with (varsus without) the
system, considered necessary by users, the smaller the number of t-st cases
actually required to test whether the expc.. system meets the criterion

requirement. This point will be considevred in substantial detail in Chapte:
5.

2-34

. Service Requirements. Verification testing should be systematically
performed for the service requirements of expert systems, just like any other
software product. Fagan and Miller (as reported in DeMillo et al., 1987) have
identified four phases for software testing. The first phase is manual
analysis in which the requirements specification and design and implementation
plan are analyzed for problems by experienced software engineers. The second
phase 1s static analysis, which may be manual or automated, in which require-
ments and design deocuments and software are analyzed, but without code
execution. The third phase is dynamic analysis in which software is executed
with a set of test data, such as in random testing, functional testing, and
path testing. The fourth phase, which Fagan and Miller consider to be
optional, is attempting to prove the program as being correct, such as in
mathematical verification. Detailed discussions of these and other methods
can be found in, for example, DeMillo et al. (1987), Fairley (1985), Pressman
(1982), and Rushby (1988).

Jiscussion. 1In closing this subsection, we want to make four points
about technical evaluation methods. First, as Hamlet (1988, p. 666) poincs
. out, each method has its strengths and weaknesses and therefore, represents
"imperfect test methods.” Therefore, testers need to use multiple methods to
obtain accurate feedback. Secend, the intent of testing is to find errors.
As Fairley (1985, p. 268) points out, "... one has most confidence in programs
with no detected bugs after thorough testing and least confidence in a program
with a long history of fixes." Third, the best way to minimize the number of
errors and the amount of time, effort, and money required to fix them, is to
eliminate errors early in development. Consequently, as Gelperin and Hetzel
(1988) point out, software development life cycles are becoming "preventive"
through the application of scftware testing methods early in the development
process. And, fourch, testing methods using experts to evaluate the knowledge
base rely heavily on empirical analysis via test data. However, the reader
should keep a clear distinction between the empirical results of technical and
empirical evaluation methods. The former focus on how well the expert
system’s knowledge base was developed; tl» latter focus on how much better
system users, who may not be experts, can perform the task using the expert

system.

2-35

Empirical Test and Evaluation Methods

Empirical evaluation methods can be classified into experiments, quasi-
experiments, case studies, simulations, and statistical analyses of historica®
data (e.g., see Adelman, 1990b). Only the first two methods are considered

here.

Experiments. Experiments are, by far, the most common and commonly
thought of empirical evaluation method. Moreover, they are particularly
appropriate when a number of people would actually use the developed expert
system, for experiments are designed to help generalize from a test sample to

the larger population.

One typically thinks of two kinds of experiments—benchmark testing and
factorial designs. The first kind tests the system against objective bench-
marks that represent performance constraints. If the system passes the
benchmarks, it proceeds further; if it fails, it undergoes further development
or is set aside. "For example, it is not enough to know that with the aid the
user can arrive at a decision in 30 min[utes]. If the organizational user
required a decision in 30 min{utes], the aid would be effective. 1If a
decision was needed in 15 min{utes], the aid would not be effective" (Riedel
and Pitz, 1986, pp. 984-985).

It should be noted that such performance benchmarks differ from the more
traditional time and efficiency measures used to benchmark computer systems.
{Note: Readers interested in the latter are referred to Press (1989), who
benchmarked different expert systems on the time required to load and execute
different types of knowledge bases, and the amount of disk space required in
source and fast-load formats.] Both classes of benchmarks typically get
developed during requirements analyses emphasizing a features-based approach.
Although such performance constraints may be necessary in real-time, life-

critical activities, they are unnecessary for many expert system applications.
Performance benchmarks represent noncompensatory decision rules; that

is, the system's other features do not compensate for failing the performance

benchmark. Such a position may be inconsistent with the decision rule guiding

2-36

the sponsoring team’s evaluation. For example, it's quite possible that the
sponsoring team would give up some time for task accomplishment in order to

gain an improvement on other MOEs, such as decision performance.

The second kind of experiment is a factorial design (e.g., see Cochran
and Cox, 1957) where (a) one or more factors are systematically varied as the
independent variables, and (b) the dependent variables are gquantitative,
objective measures of system performance. There are five basic components of
factorial experiments. First, there are the participants, or subjects, in the
experiment. These may or may not be experts depending on the targeted users
of the expert system’s advice. We focus on "users" because the system

operators may or may not be the actual decision makers.

Second, there is the task that the participants perform during the
experiment. Test cases are often embedded in larger scenarios representative
of the organization's problem-solving environment in order to effectively
assess (1) the users’ ability to solve pro’ lems with and without the system,
and (2) their opinion of system characteristies, such as its speed, explana-
tion capabllities, organizational fit, etec. Remember, the expert system may

be addressing only part of a much larger organizational decision.

Third, there are the experimental conditions or independent variables of
interest, such as whether the participants perform the task with or without
the expert system. The level of task difficulty should be either as represen-
tative of the operational environment as possible or matched to the required
performance capabilities of the system. The capabilities of the system depend

on its stage of development (e.g., see Gaschnig et al., 1983; Marcot, 1987).

Fourth, there are the dependent variables (or MOEs) of interest.
Objective measures (e.g., performance and speed), observational measures
(e.g., regarding how the system is used) and subjective measures (e.g., user
confidence in the solution) can all be used as dependent variables. In the
case of decision quality, cone should use either ground truth measures (i.e.,
the correct answer) for the task or, if they do not exist or are inappro-
priate, the consensus or collective judgment of experts. If ground truth

measures exist, one should discriminate between "accuracy” and "bias" in a

2-37

signal detection sense, as was done for the knowledge base. 1If experts are
used, "blind" ratings as to which experimental conditions produced the
solutions are again required to control against bias. Using at least two
experts who have not participated in the development is advocated here becaus-
of the substantial empirical resecarch shewing expert disagreement. However,
the use of one expert is acceptable if the requirement is that the expert

system emulate the judgments of that expert.

Fifth, there are the procedures governing the overall implementation of
the experiment. Substantial care should be directed toward accurately
representing the unaided as well as aided condition to ensure a fair test. 1If
performance is better in the "aided" condition, we want to be able to say that
it is due to the expert system and not some other extraneous factor. In order
to do so, we need to (ideally) try to control for all "plausible rival
hypotheses"” (Campbell and Stanley, 1966, p. 36) that might explain the
obtained findings. Toward that goal we introduce the concepts of reliability
and validity.

Yin (1984, p. 36) defines reliability as "demonstrating that the opera-
tions of a study—such as the data collection procedures—can be repeated,
with the same results.” The key concept is replication. In contrast, "valid"
is defined by Webster's dictionary (1966) as that which is sound because it is
"well grounded on principles or evidence."” If an experiment is valid, its
conclusions can be accepted; that is, rival hypotheses have been controlled
for.

An experiment can be reliable, but its conclusions invalid. However, an
experiment cannot be valid if it is unreliable; that is, one cannot conclude
that the results are well grounded if the evidence upon which they are based
is undependable. The basis for good experimentation is, therefore, reliable
(i.e., dependsble) procedures and measures. Although far from trivial,
reliability is typically possible in experimentation because of high ex-
perimenter control. For example, the experimenter can pilot-test and subse-
quently modify the procedures and measures until they produce the same resui’

when applied to the same situation, regardless of who performs the experiment

2-38

We consider four types of validity. First, Yin (1984, p. 36) has
defined internal validity as "establishing a causal relationship, whereby
certaln conditions are shown to lead to other conditions, as distinguished
from spurious relationships." As Cook and Campbell (1979, p. 38) note,
"Internal validity has nothing to do with the abstract labeling of a presumed
cause or effect; rather, it deals with the relationship between the research
operations irrespective of what they theoretically represent" [italics
theirs]. Although there are numerous threats to intermal validity, randomiza-
tion of participants to experimental conditions is the most effective means

for guarding against them.

In addition, one needs to consider the experiment's construct validity,
its statisti.al conclusion validity, and its external validity. Yin (1984, p.
36) has defined construct validity as "... establishing good operational
measures for the concepts being studied." Construct validity is required in
order to "make generalizations about higher-order constructs from research
operations®” (Cook and Campbell, 1979, p. 38) in a particular study. Good
construct validity means that we are measuring that, and only that, which we
want to be measuring. Of particular concern in expert system evaluations is
that the "system treatment" is not confounded with something else. If
confounding exists, then the "something else” represents rival hypotheses that

could explain our obtained results.

"Statistical conclusion validity is concerned not with sources of
systematic bias but with sources of random error and with the appropriate use
of statistics and statistical tests" (Cook and Campbell, 1979, p. 80). The
former concern is with whether the study is sensitive enough to permit
reasonable statements regarding the covariation between the independent and
dependent variables. The latter concern is with what constitutes appropriate
statistical tests of these statements. We will return to both concerns in

substantial detail in later chapters.

As Campbell and Stanley (1966, p. 5) point out, "External validity asks
the question of generalizability: To what populations, settings, treatment
variables, and measurement variables can this effect be generalized?" [italics

theirs]. Within the context of expert system evaluations, external validity

2-39

deals with the extent to which the results of an experiment conducted in a
simulated (laboratory) setting will generalize to an operational environment.
Consistent with an iterative, prototyping approach, the representativeness of
the experimental setting and the level of the system’s performance require-
ments should advance throughout the development cycle. Although the latter is
routinely acknowledged, the former is not. It must be remembered that expert
systems and, indeed, most information and decision technology, fail to be
successfully implemented for organizational, not technical, reasons. Conse-
quently, increasing the fidelity of the organizational and environmental
interfaces between the system and its users is essential in generalizing the

performance results obtained in the laboratory to the real world.

Quasi-Experiments. Ildeally, field experimentation would be used to
assess if the expert system significantly improved performance in an actual
organizational setting. For example, appropriate organizational units (e.g.,
sections in a company or governmental agency) would be randomly assigned to
the "with system" and “without system" conditions, and their performance
measured until it stabilized. If possible, a "placebo"” condition would be
included too. Organizational units in this condition would be given some
"treatment” that was not hypothesized to have any effect on performance. This
is analogous to giving patients sugar pills when evaluating new drugs, and is
oriented to controlling for the "Hawthorne effect” (e.g., see Schein, 1970)
confounding in the "with system" condition that is the result of being given
special treatment and not the technology. The unit of analysis is the
performance of the organizational unif; consequently, a large enough sample of

units would be required for performing statistical tests.

The sample size and randomization requirements of true experiments is
typically not possible in many organizations. Quasi-experimental designs
should be used in such situations. To quote Campbell and Stanley (1966, p.
34), "There are many social settings in which the research person can intro-
duce something like experimental design into his scheduling of data collection
procedures (e.g., the when and to whom of measurement), even though he lacks
the full control over the scheduling of experimental stimuli (the when and .

whom of exposure and the ability to randomize exposures) which make a true

2-40

experiment possible. Collectively, such situations can be regarded as quasi-

experimental designs" [italics theirs].

There are a number of different types of quasi-experimental designs.
Among the ten types identified by Campbell and Stanley (1966) are: (a) time
series designs, where the organizational unit would be measured for a long
pericod of time before and after receiving the system; (b) multiple time series
designs that do not use randomization, but do use a control group that does
not receive the system; and (c¢) nonequivalent (and nonrandomized) control
group designs that rely on statistical techniques like analysis of covariance
to assess whether the pre-test and post-test difference for the expert system
group 1is significantly better than that of the control group. These and other
empirical test and evaluation methods will be considered in greater detail in

later chapters.

CHAPTER SUMMARY

This chapter had three principal sections. The first section overviewed
test and evaluation criteria identified by Adelman and Ulvila (in press).
Although the specific criteria one would use would depend on the specific
requirements of one’s users and sponsors, the criteria presented herein
contained the wide range of test and evaluation criteria commonly found in the
literature and, therefore, can give one a broad list of criteria from which to
start. The second section of the chapter overviewed the expert system
development approach. Although this approach is moving toward incorporating
aspects of more traditional software systems engineering, it is still epito-
mized by iteration, prototyping, and test and evaluation. And in the third
section, we overviewed the many different types of subjective, technical, and
empirical test and evaluation methods. A multi-faceted test and evaluation is
required in order to provide the different kinds of information that develop-
ers and sponsors need in order to assess the utility of an expert system, both

during and after development.
All three classes of test and evaluation methods are applicable during a

fcrmal test and evaluation of an expert system prototype by an outside group,

as was shown in Chapter 1. In addition, however, specific methods are more or

2-41

less applicable at other times in the development cycle. 1In particular,
subjective evaluation methods are applicable early in the cycle because they
represent an explicit means for defining the judgments of members of the

sponsoring team and potential users of the system.

Technical test and evsluation methods are also applicable during design
and development. For example, as part of the knowledge elicitatior and
representation process, one should routinely assess the adequacv and accura~-
of the knowledge base by using (1) static testing to help assess the knowledge
base’'s logical consistency and completeness, and (2) experts, both those
participating in development and those acting as evaluators, to help assess
the knowledge base’s functional completeness and predictive accuracy. In
addition, traditional software test and verification methods can be used to
help assess the "service" versus "competency" requirements of the expert

system.

In contrast to technical test and evaluation methods, which focus on how
well the system was developed, empirical test and evaluation methods focus on
how well decision makers can perform their task(s) with (versus without) the
system. From an iterative, prototyping perspective, it is anticipated that
experiments will be conducted throughout development as a means of objectively
measuring the performance of the expert system and testing hypotheses foi
improving it. After transferring the expert system to the test organization,
experiments, quasi-experiments, and case studies can be used to evaluate
performance in the actual, organizational setting.

The different methods overviewed herein address the different test and
evaluation criteria represented in the hierarchy shown in Table 2-1. This
hierarchy not only represents a framework for summarizing the criteria, but
for integrating them using multiattribute utility assessment. In particular,
we will demonstrate that this hierarchy can be used in conjunction with MAUA
scoring and weighting procedures to assess the overall utility of an expert
system to users and sponsors. Consequently, with these thoughts in mind, we
now turn to consider subjective test and evaluation methods in more detail

the next chapter.

2-42

CHAPTER 3:

MORE ABOUT SUBJECTIVE TEST AND EVALUATION METHODS

The last chapter overviewed five different subjective evaluation
methods: multiattribute utility assessment (MAUA), cost-benefit analysis,
the dollar-equivalent technique, decision analysis, and a MAUA-based cost-
benefit analysis. We also briefly overviewed how feature-based criteria
lists and value of information analysis, two other subjective evaluation
methods, can be subsumed under the broader methods of MAUA and decision
analysis, respectively. This chapter will (1) overview the applicability
of each of the five subjective methods in more detail, and (2) provide

details of a specific MAUA-based method for testing expert systems.

This chapter will continue to emphasize the importance of using
subjective evaluation methods to link together Steps 1 (requirements
analysis) and 8 (evaluation) in the expert system development process
through the feedback provided in Step 9 (feedback). For it is by defining,
at the outset of the development effort, the requirements for evaluating
the expert system that helps ensure that the development effort will stay
on track and that the expert system will be used by the persons for whom it
is being developed. Moreover, the sponsoring team’s objectives, and
particularly the tradeoffs between objectives, can change during the course
of the development effort, either because of the changing environment with
which the sponsoring team is dealing, changes in the membership of the
sponsoring team, the insights gained during the development process
regarding what is technically feasible or most appropriate, etc. Subjec-
tive evaluation methods provide an effective mechanism for representing
these changes and, through sensitivity analysis, estimating their implica-
tions on the global measure of effectiveness (MOE). More generally, such
methods provide an explicit mechanism (and audit trail) for evaluating
whether the prototypes and final, operational version of the expert system

ate consistent with the sponsoring team’'s goals and objectives.
The applicability of subjective evaluation methods to the other steps

in the development process will not be emphasized in this chapter. As was

poeinted out in the last chapter, these methods can be readily used by the

3-1

development team throughout the development process—for example, in for-
mulating specific requirements, in evaluating off-the-shelf software (e.g.,
shells) versus project-specific software, or in evaluating various hardware
configurations. Remember, these subjective methods and variations were all
developed to help decision makers evaluate systematically decision options,
regardless of what they might be. This presentation is an adaptation of
the methods for testing expert systems. The methods are applicable
anywhere in the development process where members of the development team
need to evaluate one option against another. Thus, in those areas impor-
tant enough to warrant their use, they represent an audit trail for

indicating why one action was selected over another.

Finally, it is important to again point out that Andriole (1989) iden-
tifies a wide range of "requirements analysis methods" and taxonomies for
profiling the task, user, and organizational requirements. These methods
include open- and closed-ended questionnaires, various types of interview-
ing procedures, the observation of users’ behavior as they perform
scenarios (i.e., hypothetical decision problems), protocol analyses where
users describe their decision-making processes as they perform scenarios,
etc. We will not discuss these methods because they are concerned with
requirements analysis rather than testing and evaluation. (For the same
reason we will not discuss prototyping methods or systems engineering

methods .)

We do want to point out, as Andriole does, that requirements analysis
methods are fallible; consequently, members of the development team should
use multiple methods in order to ensure the reliability and validity of the
results of the requirements analysis. By reliable we mean that the same
method will produce the same results at different times. By valid we mean
that the results are, in fact, related to the utility of the expert system.
Consistent with the prototyping strategy, we would expect less reliability
and validity of the results early in the development process. As a tester
or evaluator, you can help the development team assess which aspects of the
requirements analysis need more work, as well as what o%her methods could

be used to improve the analysis, before moving on to develop the functiona:

3-2

model of the system. In this respect, you should find subjective evalua-

tion methods particularly helpful.

MULTIATTRIBUTE UTILITY ASSESSMENT (MAUA)

There are numerous texts (e.g., Huber, 1980; Keeney and Raiffa, 1976;
Pitz and McKillip, 1984) and papers (e.g., Edwards, 1977; Einhorn and
McCoach, 1977) describing MAUA. As Huber (1980, p. 46) has pointed out,
"Multiattribute utility models (MAU models) are designed to obtain the
utility of items or alternatives that have more than one valuable at-
tribute; therefore, they must be evaluated on more than one criterion. A
MAU model essentially shows a decision maker how to aggregate the utility
or satisfaction derived from each of the various attributes into a single
measure of the overall utility of the multiattributed item or alternative."
Expert systems are clearly "items" that have numerous attributes (or
characteristics) of potential value to a decision maker. MAUA represents a
method for combining how well an expert system scores on these attributes

(1.e., individual measures of effectiveness) into an overall assessment.

All of the subjective evzluation methods that we will consider in this
book proceed by a "divide ard conquer” or "decomposition and reintegration”
approach. When applying MAUA to the testing and evaluation of expert
systems, the expert system is conceptually decomposed into criteria that
can be defined well enough so that one can obtain either subjective or
objective measures of how well the expert system performs on each of them.
This decomposition typically proceeds through the creation of a value
hierarchy, such that the global criterion entitled "the overall utility (or
value) of the expert system" is decomposed into major categories of
criteria (e.g., the knowledge base, the inference engine, etc. as shown in
Table 2-1). These categories are further decomposed, and so forth, until
one is reasonably confident that one can define and obtain precise.
reliable, and valid measures (or scores) of the expert system on each

bottom-level criterion in the hierarchy.

[Note: According to Huber (1980), the bottom-level criteria should be

called "attributes." This convention is not strictly adhered to and, in

3-3

fact, it is not uncommon to use the words "criteria" and "attributes"
interchangeably. Moreover, it is not uncommon for the names Multiattribute
Utility Assessment (or Analysis), Multiattribute Utility Theory, and Multi-
criterion Decision Making to be used synonymously, even though purists
within each "variation on the theme"” might take issue with this state of
affairs. In this book, we will try to consistently use the term "attri-
butes" to refer to the bottom-level evaluation criteria. However, the

reader should not be concerned if the terms are used synonymously.]

By "precise" one means that the attribute’s definition is sufficiently
clear and unambiguous so that everyone knows exactly what characteristic of
the expert system is being measured by the attribute and how to measure it.
By "reliable" one means that, at a minimum, one will get approximately the
same score for an expert system on an attribute if one uses the same
measurement instrument at two different points in time. This is referred
to as "test-retest" reliability. The measurement instrument could be
subjective (e.g., a person’s score in answering a question) or objective
(e.g., a performance score in an experiment). In addition, one would hope
to obtaln "inter-instrument™ reliability as well, such that two measures of
an attribute, whether they are subjective or objective, would produce ap-
proximately the same scores. Finally, by "valid" one means that the
attribute is, in fact, related (or contributes) to the overall utility of
the expert system as determined by the key decision maker or the sponsoring
team. While many people would like to think that objective, performance
scores are the only valid MOEs, the overall decision regarding the value of

an expert system is invariably a mix of subjective and objective measures.

More broadly, it is desirable that the MAU hierarchy have the follow-
ing general features: be (1) comprehensive enough to account for all the
different MOEs deemed important when evaluating the expert system; (2)
capable of differentiating between an acceptable and unacceptable (or
"good" vs. "bad") system; and (3) composed of independent attributes.
Although the first two features appear clear and straightforward, the last
one may appear counter-intuitive and it is not absolutely essential. Tec
quote Ulvila et al. (1987, p. 25), "While it 1is desirable to satisfy the

iast characteristic, it is by no means required., It is possibie to define

evaluation factors that are dependent upon each other and interact in
complex ways. However, most of the value of an MAU model can usually be
obtained by using a simpler form in which each factor is independent of all
other factors. If it is clear that two factors are not independent, but
both are interacting, it is sometimes possible to define a single factor
that incorporates the critical aspects of the dependent factors. (Notice
that here we are addressing independence in the worth [italics theirs] of
an attribute, not technical independence-—e.g., run time, computer usage,
performance speed, and judgmentally assessed speed are likely to be highly
dependent but may represent attributes of separate interest to the

tester.)"

It is important to note that a hierarchy, while extremely helpful, is
not absolutely essential. All that is essential is that one be able to
define a comprehensive set of (independent) attributes that can be measured
precisely, reliably, and validly so that the overall utiiity score can
differentiate between an acceptable and unacceptable expert system. The

hierarchy simply helps one perform this task.

The application of MAUA during, or even prior to, the requirements
analysis step is typically oriented toward helping the sponsoring and
development teams (a) identify the broad organizational regquirements the
expert system needs to satisfy, and (b) select the general type of expert
system that will satisfy these requirements. The hierarchy of MOEs
presented in Table 2-1 does provide a comprehensive reference point (or
checklist) of requirements that an expert system should satisfy and,
therefore, provides an effective design and evaluation tool for guiding and
monitoring, respectively, the ongoing development process. It does not,
however, necessarily provide an effective hierarchy of MOEs for initially
selecting the general type of expert system to develop, for that decision

may require different types of information.

As a tester or evaluator, the hierarchy of MOEs and, more generally,
the application of MAUA should be tailored to the objectives and informa-
tion needs of the members of the sponsoring team with which one is

working. In fact, few structuring techniques have been proposed by

3-5

decision scientists. [wo techniques have, however, been rcutinely used by
analysts applying MAUA. a top-down (or hierarchical) approach (Keeney and
Raiffa, 1976), and a bottom-up (or attribute listing) approach (Kelly,
1973). The top-down approach to structuring the hierarchy proceeds as
follows: the upper level nodes are listed first; then each node, in turn,
i{s subdivided into its component attrib .tes. The process continues until
it identifies the lowest-level attributes. In contrast, the bottom-up
approach proceeds by first obtaining a list of all of the possible at-
tributes (l.e., lower-level nodes of the hierarchy) without any concern for
their hierarchical arrangement. Au cffective procedure for doing this that
is quite consistent with the SHOR paradizm is to ask the participant (e.g.,
decision ma -) to describe how the alternatives are different (e.g.,
better or worse) from each other. The specific differences typically
represent the bottom-level attributes. The attributes are subsequently
clustered together to form the criteria representing t..e branches of the

hierarchy.

In general, there has been very little research evaluating the
relative effectiveness of MAUA structuring techniques, and only one study
(Adelman, Sticha, and Donnell, 1986) doing so under controlled, exnervi-
mental conditions where there existed an accepted multiattributed bierarchy
as an external criterion for measuring effectiveness. With regard to the
latter, Adelman et al. found no significant difference in the accuracy of
top-down and bottom-up structuring techniques. Although equivocal, their
results did, however, indicate that the top-down technique results in
deeper hierarchies than the bottom-up technique. Since the deeper hierar-
chies did not result in more accurate ones, these results suggest that
greater depth is merely a by-product of the top-down approach and not a
funccion of a more comprehensive problem decomposition. Their "post hoc"
analysis strongly suggested that combining the two approaches would result
in significantly more accurate hierarchies. The hierarchy of expert system
attributes described later in this chapter was developed by a comhination

of top-down and bottom-up techniques.

Reintegration typically occurs within MAUA through the application »:

utility functions and assessment of relative importance weights. Remember

3-6

the expert system is being evaluated on many different atcributes. The
natural measurement scale for an attribute depends on the nature of the
sttribute. For example, the scale for an attribute could be in objective
units (e.g., minutes for time), subjective units (e.g., the eleven-point
questionnaire scale used in the DART evaluation), or categories (e.g., yes
or no to the presence of a feature), depending on the nature of the
attribute. A common scale is, however, required in order to compare scores
on one attribute with scores on another (i.e., combining "apples with
oranges”) and, by so doing, obtain an overall assessment for the item
(e.g., expert system) being evaluated by the decision maker. A "utility"
scale, which conceptually measures psychological value or worth or satis-
faction, meets this requirement. Utility (or value) functions are used to
translate the performance on an attribute into a utility score on that
attribute. Then, relative importance weights (or other forms of combina-

tion rules) are used to assess the relative value of a utility score on one

attribute with the utility score on another.

Utility functions for individual attributes tend to be linear,
increasing or decreasing in form, as we used in the case study shown in
Chapter 1. But as Hammond et al. (1975) point out, there is no reason why
they can not be U-shaped or inverted U-shaped or even a step-function such
that the utility score on an attribute is zero until a certain level of
performance is achieved on the attribute. The functions are represented
pictorially by utility curves, such as the hypothetical ones shown in

Figure 3-1 from Ulvila et al. (1987, p. 29).

Utility
Utility
Utility

Utility

Attribute Attribute Attribute Attribute
(o) (v) (c) (d)

Figure 3-1: Some Possible Shape Utility Functions

3-7

The specific range for the utility scale is arbitrary; for example,
Huber (1980) uses a 0 to 100 range throughout his book and Keeney and
Raiffa (1976) use a 0 to 1.0 range throughout theirs. What is critical,
however, is the relative utility (or value) of the scores on the scale, anz
the relationship between differences on the scale. A utility score of 50
on a 0 to 100 utility scale (or 0.5 on a 0 to 1.0 utility scale) indicates
that it is mid-way in value between the lowest and highest values on that
scale. The difference between 25 and 50 on a utility scale {s equivalent
to the difference between 50 and 75 on that scale. The actual values on
the natural scale for the attribute that corresponds to these utility
values will, more often than not, fail to correspond to such a straight-

line function.

Consider the hypothetical utility function shown in Figure 3-2 from
Ulvila et al. (1987, p. 29), which transforms the time required to set up
an artificial intelligence system into a utility score in the military
context they were considering. A utility score of 100 is obtained for a
set-up time of ¢ minutes; a utility score of O s obtained for a set-up
time of 60 minutes. One obtains half (or more) of the utility if the
system is set up in 5 minutes (or less). Moreover, an increase from 5 to
15 minutes, which has a utility scale value of 25, was considered as
serious as an increase from 15 to 60 minutes. This utility scale is

clearly telling the developer the importance of a fast set-up time to the

user.
100)
7%
2
g 50
3
25 A
N\&
0 T T T T T T T T T T X
Q 5 10 15 20 25 30 35 40 45 30 35 60

Set—~up time (minutes)

Figure 3-2: Hypothetical Utility Function for Expert System Set-Up Time

3-8

@
y

Utitity

Nor are utility functions limited to characteristics with continuocus

measures. Utility functions can also be constructed for categorical

variables or other variables with discrete units. Some examples are shown

in Figure 3-3. The important features are that the horizontal axis
uniquely determines the state of the attribute, and the vertical axis

specifies the value of the states.

100 = X 100 — X 100 -% 100 - X
} 4
x X
oy > >
50 ~ £ 50 - £ so A £ s0
X 3 5 5
X
0 R Q ey o
EP VP P G VG EG No Yes tow Med High Low Ideal High
Attribute (e) Attribute (f) Attribu (g) Attribute (h)

EP = Extremely Poor
VP = Very Poor

P =Poor

G = Good

VG = Very Good

EG = Extremely Goad

Figure 3-3: Possible Discrete Utility Functions

But how important is the relative importance of one attribute versus

another? The relative importance of a utility score on a bottom-level

attribute is reflected typically by (1) its relative weight compared to the
other bottom-level attributes comprising a component, and (2) the relative

weight of the components moving up the hierarchy. For example, Figure 3-4

(from Buede and Adelman, 1987, p. 143) considers the relative importance of
five attributes, which we‘ll initially assume are zll bottom-level at-

tributes to the same upper-level criterion. Specifically, each of the five

rectangles in the top half of Figure 3-4 represents the utility scales for
an attribute. The rank order of the rectangles (going from left to right)
represents the rank order of the attributes in terms of their relative
importance; that is, attribute A {s more important that attribute B, and so
forth. The relative height of the rectangles indicates their relative

importance weights. For example, attribute B is about 60% as tall as

3-9

attribute A; consequently, a utility score of 100 on attribute B is
equivalent to a utility score of 60 on attribute A. Similarly, attribute C
is half as tall as attribute B; consequently, a utility score of 100 on
attribute C is equivalent te a utility score of 50 on attribute B and a
utility score of 30 on attribute A. A score of 50 on attribute C iz
equivalent to a score of 25 on attribute B and a score of 15 on attribute

A.

l
LJBE’];:

0 3
c c
)
A A
[8
A<B+C+D A>B+C+E

Figure 3-4: A Pictorial Representation of the Relative Importance
of Different Utility Scales

The bottom half of Figure 3-4 i{llustrates the "paired comparison"
weighting technique, which utilizes the (utility) scaling concepts il-
lustrated in the top half of the figure. Specifically, it shows that a
utility score of 100 on attribute B plus a utility score of 100 on at-
tribute C results in a (combined) utility score of only 90 on attribute 4;
consequently, the combined relative importance weights for attributes B and
C must be less than the weight for attribute A. In the example shown, the
added importance weights for attributes B, C, and D are greater than that
for attribute A, but the added weights for attributes B, C, and E are not

By comparing the overall value of a utility score of 100 on each of che

3-10

attributes, one is able to assess the relative importance of the attri-

butes.

The same procedures can be used to assign relative weights to the
attributes at the next level of the hierarchy, and so forth up the hierar-
chy until all the attributes at each level of the hierarchy have been
assigned relative importance weights. The weights at each level of the
hierarchy should be proportional such that the sum of the weights at each
level is the same. We recommend scaling the weights to sum to 1.0 at each
level so that the overall utility scale is on the same scale as {s being
used for each attribute. If one then multiplies the weights along each
branch from the top to the bottom of the hierarchy, one will obtain a
cumulative weight on each bottom-level attribute that indicates the overall

importance of one bottom-level attribute versus another.

This method of assigning weights to attributes assumes that the at-
tributes are "additively independent" (Keeney and Raiffa, 1976). Roughly
speaking, additive independence is a condition where the utility for
improvements in one attribute does not depend on the levels of the other
attributes. Other, more complicated formulations are possible, and many of
them are described by Keeney and Raiffa (1976). However, Edwards (1977)
notes that (p. 250), "theory, simulation computations, and experience all
suggest that {the additively independent form] yields extremely close
approximations to very much more complicated "true" utility functions,
while remaining far easier to elicit and understand."” The additive form is
assumed in the framework described later in this chapter and used through-

out this book.

As has been discussed thus far, reintegration of the bottom-level
scores for an expert system into the assessment is achieved in MAUA by the
weighted sum of all the utility scores. This can be represented algebra-

ically by equation [3-1]:

U(i) = ? hgu(xxj) [3-1}

3-11

where:

u{i) is the overall utility for alternative i;
W, is the "cumulative" relative weight on attribute (j);
u(xyy) is the utility value for alternative i on attribute j; and

z indicates the summation over all attributes.

Equation [3-1] focuses on the bottom-level attributes in a hlerarchy, for
the relative weights (w;) In Equation {3-1] represent the "cumulative
weights™ on the bottom-level attributes. They are obtained by multiplying
the weights along each branch of the hierarchy from the top to the bottom.

The same numerical results can be obtained if one goes from the bottom
up in the hierarchy. That is, one would multiply the noncumulative
relative weights and utility scale values achieved by the alternative for
each of the bottom-level attributes in the hierarchy. One would obtain a
score for the criterion at the next higher level of the hierarchy by
sumning the weighted utility scores for all the bottom-level attributes
that it comprises. The process is then repeated. One would multiply this
score by the relative weight for the criterion ta obtain a weighted score
for the criterion. Then, one would add the weighted scores to obtain a
utility score for the criterion category at the next higher level of the
hierarchy, and so forth, moving up the hierarchy until one obtained an

overall utility score.

As Hogarth (1987) has pointed out, the additive decision rule shown in
Equation [3-1] is a compensatory combination rule because high utility
values on certain attributes can compensate for low values on other
attributes and still result in a good score on the global MOE. However, as
Riedel and Pitz (1986) pointed out, it might be more appropriate to use a
noncompensatory rule to ensure that the expert system gets a low score on
the global MOE if it fails to achieve the necessary performance level on a
critical bottom-level attribute. Thils perspective that can be readily
handled arithmetically in MAUA by using (1) a zero/one utility score to

reflect whether or not the expert system passed the threshold on the

3-12

critical dimension(s), and (2) a multiplicative combination rule to obtain
the global MOE utility score. Alternatively, we recommend the use of
thresholds for attributes that are noncompensatory. Thresholds should be
set for attributes where nonperformance on the attribute should lead to a
poor overall assessment ragardless of the performance on other attributes.
Using this system to evaluate an expert system, a failure to pass a
threshold is noted for all attributes where the failure occurs, and this
notation is carried up in higher-level assessments regardless of the
system’'s weighted-average utility score. This threshold system is utilized
in the MAUA computer program described by Ulvila et al. (1987).

In closing this discussion, it is important to emphasize that MAUA can
be used to create an assessment structure for combining an expert system
using both objective and subjective MOEs. Its application, however, might
inftially be disturbing to (and difficult for) members of both the sponsor-
fing and developing teams, for it emphasizes the subjective process decision
ma " .¢s typlcally go through when evaluating expert systems. To quote
Riedel and Pitz (1986, pp 987-988), "The [utility scales] and welghts are
necessarily personal judgments by the decision maker that express the
contribution each attribute makes to the overall MOE. There is no way to
avoid the fact that the overall MOE must be based on such judgments, or the
fact that no mechanical procedure can replace thls subjective assessment

.." This does not mean, of course, that MAUA is the only subjective
evaluation metuod that one can use to evaluate how well an expert system is
meeting the sponsoring team’s requirements, but it will be the major
subjective method used in this book. In particular, we propose a MAUA
framework later in this chapter, and we propose weights based on charac-
teristics of the expert system in Chapter 7. We now turn to consider a
second subjective method that has been used for system evaluation—cost-

benefit analysis.
COST-BENEFIT ANALYSIS AND THE DOLLAR-EQUIVALENT TECHNIQUE
As Riedel and Pitz (1986, p.991) point out, "In making decisions about

a system, cost is often an important factor ... The problem is how to

integrate the cost factor into the evaluation design.” With MAUA, cost 1s

3-13

simply considered as one of the (higher-level) MOEs. 1Its impact on the
evaluation is determined by its impact on the overall utility score, which
is achieved by (a) the utility function translating dollar costs into a
utility score, and (b) the relative importance given to the cost MOE. As
Huber (1980, pp. 79- 83) points out, in traditional cost-benefit analysis
and the dollar-equivalent methods, however, all the benefits, as well as
costs, are translated into dollar values instead of utilities. In the
former, standard economic or accounting practices, such as employing the
rate of return or time value of money concept, are used to create monetary
equivalents. In the latter, "... the monetary equivalents are developed
judgmentally when the standard economic techniques are stretched beyond
their limits.™

The perhaps surprising conceptual simllarity between cost-benefit
analysis and MAUA can be illustrated by listing the following five prin-
cipal steps for implementing the former, as identified by Keim and Janaro
(1982): (1) identification of pertinent measures of effectiveness, that
is, benefits; (2) the description of alternatives; (3) the "expression" of
performance and cost as functions of the characteristics of each alterna-
tive; (4) the estimation of appropriate (dollar) values for the (perfor-
mance) equation parameters; and (5) the computation, sensitivity analysis,
and presentation of results. This sounds remarkably like the MAUA proce-
dures described above where one (a) decomposed the global MOE into a
hierarchy of MOEs (i.e., attributes); (b) defined the alternatives; (c)
identified the natural scale value for each bottom-level attribute and
obtained the scores for the alternatives on scales; (d) constructed utility
functions for each bottom-level attribute and relative weights for all the
attributes, in order to convert the natural scale values into utility scale
values; and (e) computationally used a weighted, additive decision rule (or
some other combination rule) to convert an alternative’s scores on each of
the bottom-level attributes into an overall utility score on the global
MOE. Sensitivity analysis is routinely performed in MAUA to assess the
impact of different scores, utility functions, and relative weights (or
combination rules) on the overall MOE score for one or more alternatives.

The big differences between cost-benefit analysis and MAUA is that the

3-14

former relies as much as possible on tangible (i.e., objective) benefits,

and uses dollars Instead of utilities as a metric for measuring value.

From a MAUA perspective, the omission of intangible benefits (and
costs) is equivalent to omitting attributes from the MAU hierarchy.
Whether this is acceptable or not depends on the nature of the "item(s)"
being evaluated by a cost-benefit analysis. Lay (1985, p. 32) has dis-
cussed this point with consideration to expert systems. "Most capital
investments decisions in the business field can be evaluated in terms of
return on investment (ROI). This is because the asset that is being
evaluated will create tangible Benefits (such as the manufacture of a
product for subsequent sale). An information system (particularly an
expert system), may only produce intangible benefits [e.g., information and
decision process support] and therefore the ROI criteria can no longer be
applied. Intangibles, although not quantifiable, should be included in the

process since their impact on the organization may be significant.”

Obviously, we disagree with Lay’s statement that intangibles are not
quantifiable, for MAUA provides explicit procedures for quantifying the
perceived value of intangibles. We do, however, agree with his focus on
the significance of including intangibles in the evaluation. However,
their inclusion or omission should depend on what factors the sponsoring
and development teams consider to be important design and evaluatioa
requirexents. Tf intangibles are deemed unimportant enough to exclude them
from the analysis, particularly after a thorough discussion of the ad-
vantages and disadvantages to including them, then it might be more ap-
propriate to perform cost-benefit analysis than MAUA because of its greater

familiarity and use as common business practice.

Actually, as Huber (1980, p.83) points out, the traditional cost-
benefit analysis approach Is a special case of the dollar-equivalent
method, which is "... a special case of the more general ... MAU model
technique.” The appropriateness of the traditional cost-benefit analysis
and dollar-equivalent methods versus MAUA depends on the defensibility of
the conversions to monetary equivalents. If standard economic practices

are clear and defensible, Huber argues that the traditional cost-benefit

3-15

analysis approach is often preferred because its conversions are more
explicit and agreed-upon. However, as Huber (1980) and Riedel and Pitz
(1986) point out, cost-benefit analysis requires substantial ludgments tha’
may be particularly sublect to various biases as a result. "When conver
sion of the payoffs on all attributes to dollar equivalents seems reason-
able and defensible, the dollar-equivalent techniaue is oreferred nver the
MAU model technique. This is a consequence of the fact thar the single
aggregate figure derived in dollars can be more ~asilv compared to the
levels of other criteria that were not included in the analvsis" (Huber,
1980, p. 82). As always, however, the needs and preferences of members of
the sponsoring and development teams should be factored inte the decision

regarding which subjective evaluation method to use.

In closing this discussion, it is important to note that Keim and
Janarc (1982) have argued for a phased cost-benefit analysis, where the
nature of the analysis changes through the development cycle. Specifical-
ly, at the beginning of the effort, they argue for a relative cost-benefit
analysis, where the focus is c¢n fidentifying the relative costs and benefit=x
of a range of alternative system configurations {n oruer to select an
alternative (or limited range of alternatives) for further specification.
Their reasoning is that "... due to the evolutionary nature of the final
system configuration the original estimates are often grossly distorted.
The only way to make evaluations reasonable is to compare relative cost-
benefit scenarios for the range of alternatives under consideration" (p.
25). As one moves through the different development steps, the system
design becomes more specific; consequently, one can drop the relative
analysis" focus because increasingly specific and quantifiable information
is available for the system evaluation. Such a "phased" orientation is, of
course, consistent with the discussion above of striving to link together
requirements analysis (and the selection of alternatives) with thelr formal

evaluations.

DECISION TREE ANALYSIS

Decision tree analysis is a formal method for combining uncertainties

with utilities (or monetary equivalents) when evaluatiung alternative

3-16

decision options. There are numerous texts on the subject (e.g., see Brown
et al., 1974; von Winterfeld* at.d Edwards, 1986; Watson and Buede, 1987).
We will not discuss it {: _reat detail because, at least to our knowledge,
it has not yet been i,piled to evaluating expert systems. The interested
reader is, however, referred to Cohen and Freeling (7981), who provide a
detailed theoretical presentation of its potential applicability for
evalue.'ng information systems, and to 0'Connor (1989), who discusses its
applicability in developing and evaluating alternative architectures for

the Strateglic Defense Initiative.

What is particularly appealing about decision tree analysis for evalu-
ating expert systems is the ability to use scenarios to represent, at a
collective level, the uncertainties inherent in the decision-making
situation facing members of the sponsoring team. Within decision tree
analysis, these scenarios represent the members’ hypotheses regarding
alternative states of the world, a perspective that is consistent with the
SHOR paradigm. Remember, at the broadest level, and particularly if the
situation permits it during the earliest steps of the development process,
the evaluator’'s job is to help members of the sponsoring team decide
whether development of an expert system is an effective option for dealing
with hypotheses regarding the current or future problem environment with

which the organization will be dealing.

From a decision-analytic perspective, the overall utility or, more
appropriately, expected utility, of different organizational options
including whether or not to develop an expert system, depends on the (a)
probabilities assigned to the various scenarios, and (b) the utility of
each of the options for each of the scenarios. This situation can be
illustrated by the concept of a payoff matrix, an example of which is
presented in Table 3-1. The rows of the matrix represent all the different
alternatives, including whether or not to develop the expert system, as
well as variations on a particular theme, available to organizational
decision makers (i.e., members of the sponsoring team). The columns
represent the different scunarios that could significantly affect the
attractiveness of the alternatives. The p,...p, values represent the

probabilities for each scenario, with their sum being 1.0. The cell

3-17

entries in the matrix indicate the utility (or value) of the outcome or
"payoff" of each combination of options and scenarios. Each outcome is
presumed to represent a cumulative pavoff composed of perceived advantages
and disadvantages on multiple criteria of varyving ilmportance to the
decision maker{s). The "best" opntion is the one with the highest expected
utility, which is calculated for each option by firsc multiplving the
utilities for the outcomes and probabilities for the scenarios, and then

summing the products.

Table 3-1: A Simple Payoff Matrix

States of Nature

Alternatives (pnS, (P25, .. (Pe)Sk
A a, ay - a
B b; b, by
N ny n; ng

Substanzial care must be given to defining the scenarios and obtaining
the probability assessments. O’Connor and Edwards (1976) point cut that
not only do the scenarics have to be realistic, they have to be representa-
tive of a wide range of possible futures states of nature without being a
long, tedious list of uncertainties. Moreover, they have to be capable of
discriminating among the options in order to have any decision-making
value. 1In short, they need to be an appropriate sample from the total

scenario sample space.

With respect to probability assessments, "[t]he credibility of a
scenario to a subject seems to depend more on the coherence with which its
author has spun the tale than on its intrinsically ‘logical’ probability of
occurrence” (Spetzler and Staecl von Holstein, 1975, p. 347). Kahneman,
Slovie, and Tversky (1982) have compiled an anthology of researcn studies
demonstrating that, when compared to the tenets of probability and statis-
tical theory, humans have limited appreciation for the concepls of rance:
ness, statistical independence, sampling variability. data veijabilire,

regression effents, etc. To Tiote Hoagarth (1087 4™ . e

3-18

statistical reasoning is entirely based on the logical structure of
information, causal reasoning is responsive to both content and structure.”
Moreover, the causal implications of the stimuli can often mask the logical
structure of the problem. Consequently, it is essential that the evaluator
using decision analysis give substantial care to presenting the scenarios
so that their logical probabilistic structure and, hence, relative likell-
hood can be better assessed by participating members of the sponsoring
team. This often requires using a decision tree to decompose the scenario

into the critical, uncertain events.

This point can be illustrated by considering an uncertainty dear to
the heart of members of the development team, which i< whether or not the
sponsoring agency can provide the necessary funding level for the expert
system throughout its development cycle. Figure 3-5 presents a highly
simplified, hypothetical probability tree representing only two uncertain
events: whether or not the funding environment is stable and, conditional

upon it, whether or not the funding level will be satisfied.

Cumulative
Probabilities
REQUEST SATISFIED (.56)
(8)
REQUEST NOT SATISFIED (.14)
{2
ENVIRONMENT
REGUEST SATISFIED (.06)
{-2)
[UNSTABLE
(.3}
REQUEST NOT SATISFIED (.24)
{8)

Figure 3-§: A Highly Simplified Probability Tree
for Illustrating the Uncertainty in Funding
for an Expert System throughout the Duration of the Deveiopment Process

3-19

As you can see, we are assuming a good state of affairs. A stable funding
environment is considered twice as likely as an unstable environment. If
the environment is stable, we are assuming that it is four times as likelv
as not that the development team will receive the necessary funding If i+
is not stable, then we are assuming the opposite. If one multiplies ocut
the probabilities for each branch of the tree and then sums the probabil-
ities for the two branches resulting in the necessarv funding for the
expert system development effort, one finds, however, that the probabilir+

that the development team will have the necessary funding is actualiy only
.62,

The situation gets somewhat more discouraging if one now considers the
probability that the development team will develop an effective expert
system that will be used by the decision maker(s) for whom it is being
built. Figure 3-6 shows the probabilities for developing a "successful"”

expert system for each of the four branches of the tree in Figure 3-5,

Cumulative
Probabilities
EFFECTIVE ES (.392)
N
'REQUEST SATISFIED
t8) (168)
STABLE 3
%! EFFECTIVE ES (042}
3
REQUEST NOT SATISFIED (3)
2 (.098)
(N
ENVIRONMENT
EFFECTIVE ES {.042)
7
2EQUEST SATISFIED L7
2) {.018)
UNSTABLE (3)
(.3) EFFECTIVEES (072)
REQUEST NOT SATISFIED 3
@ \ENEEEEC.UMLES_ (.168)
(7
Figure 3-6: A Slightly Fxpanded Prohability Tree for the Hynnihetiond Coedl o Thamgtion

3-20

Again, we have assumed a good state of affairs-—— two-to-one odds for
developing a "successful" expert system with the "necessary” funding.
However, after multiplying-out all the probabilitles in the tree and
summing the probabilities for the appropriate branches, one finds that the
probability of developing this "successful” expert system is 0.548—only a
little better than flipping a coin.

The purpose in presenting what one might consider to be a reasonable,
if not realistic, scenario is three-fold. The first purpose was to
illustrate the importance of considering the structure of a scenario, not
Just its content. Substantial care must be given to eliciting probabilicy
assessments when using decision tree analysis, particularly the greater the
ambiguity and the longer the time horizon for the uncertainties of
interest, which is typically the case in the development process. The
second purpose was to provide an alternative perspective on the sad fact
that many expert systems are not successfully implemented. From a statis-
tical perspective, a large number of things have to go right for successful
implementation. And the third purpose was to again emphasize the impor-
tance of considering the uncertainties inherent in decision-making situa-
tions. As the example illustrates, it way be just as important for the
development team as for the sponsoring team to consider these uncertain-
ties. Decision analysis can alert members of the development team as to
the uncertainties in the situation within which they will be working and,
thereby, help further clarify the general requirements that the expert
system will have to satisfy under various future conditions—for example,

if all the "necessary funding" does not actually become available.

In closing this brief discussion of decision tree analysis, it is
important to reiterate that decision tree analysis combines both probabil-
ity and utility assessment. As was i1llustrated with the payoff matrix
shown in Table 3-1, the "best" option is the one with the highest expected
utilicty which is calculated for each option by first multiplying the
overall values (i.e., utilities) for the outcomes and the probabilities for
the scenarios, and then summing the products. The payoff matrix can be
expanded (e.g., see Pitz and McKillip, 1984, p. 111) by using (a) a

decision tree to pictorially represent scenarios and, thereby, reflect the

3-21

e

uncertainty in obtaining the outcomes for the options under consideration;
and (b) a MAUA hierarchy to illustrate that the overall utility for an
alternative, independent of the probability of obtaining it, is a composite
score on multiple attributes. The expected utility for each option under
consideration is the sum of the products for the probabilities for the
scenarios and the utilities for the attributes. Thus, consistent with the
SHOR paradigm, decision tree analysis is designed to assist decision maker:
in explicitly evaluating options in relation to hypotheses regarding the

uncertainties inherent in the organization’s future environment.

The process of performing a decision tree analysis is typically slow
and difficult, however, for the decision-analytic representation of the
problem can be quite large and the judgments quite extensive. Consequent-
ly, decision tree analysis 1s most viable if there is sufficient time (and
resources) for the evaluator to work with the sponsoring team when it is
still considering a range of options, that is, prior to Step 1 in the
development cycle, and preliminary discussions suggest that uncertainties
about the future environment may play a significant role in assessing the
viability of developing an expert system. Once the development process is
underway, however, the utility component is of most concern to test and
evaluation since the probability of alternative future environmental states

is not under the sponsoring or development team’s control,

MAUA-BASED COST-BENEFIT ANALYSIS

MAUA-based cost-benefit analysis has been used to help design,
completely on the basis of the decision makers’ own judgments, the most
beneficlal option packages for various levels of dollar cost. Although
this method is not as widely known as the subjective evaluation methods
described above, it has been successfully used to develop advanced helicop-
ter designs (Adelman, 1984), critical aspects of the U.S. Marine Corps’
annual budget (Watson and Buede, 1987), health and hospital services (Welss
and Zwahlen, 1982), and the training curriculum for a federal government
agency (Medlin and Adelman, 1989).

3-22

The MAUA-based cost-benefit analysis approach has six basic steps: (1)
divide the problem into independent areas (or "variables") over which
benefits and costs can vary almost independently; then, (2) idencify
distinctly different actions (or "levels") on each variable that increase
in benefit and cost; (3) assess the relative benefit and cost of each level
on each variable; (4) assess the relative benefit of one variable against
another by using relative weights on the variables; (5) calculate the
change in benefit to the change in cost ratio for each level of each
variable as one moves from the lowest to the highest level of each vari-
able; and (6) use an optimization algorithm to calculate the efficient
allocations defining the most beneficial package (i.e., one level on each

variable) for varying degrees of (total) cost.

Vhen selecting a set of expert systems, the different variables
represent the different areas for which expert systems are being considered
by the sponsoring team. For example, assume that an organization is
considering the development of expert systems for each of three major
divisions (A, B, and C) within the organization. The initial level on a
variable (e.g., A) may represent either the status quo, which may be "no
expert system,” or the cheapest, most "bare-bones" concept for developing
that expert system. [n the ease study, the status quo of "no expert
system" 1s represented by level #0; the "bare-bones" concept is represented
by level #1. The last level on a variable represents the most expensive,
"gold-plated"” (yet realistic) conceptualization of the expert system for
that area. The intermediate levels on a variable represent intermediate
conceptualizations of the expert system as one moves from the "bare-bones”

to more "gold-plated" concepts.

A relative benefit scale is established for each variable such that
the Initial level is given s value of zero and the "gold-plated” concept is
given a value of 100. Paired comparison techniques are typically used to
determine the relative benefit of the intermediate conceptualizations of
the expert system on the variable. In particular, the focus is on how much
benefit an intermediate level provides between the two endpoints of the
veriable's scale—that is, between the "bare-bones" and "gold-plated”

conceptes. For example, is conceptualization #2 (e.g., level #2 on

3-23

variable A) halfway in benefit between the "bare-bones” and "gold-plated"®
concepts? If the answer is "yes," then conceptualization #2 would get a
benefit score of 50 on that variable. If the answer is "no," then the
questioning focuses on how much less than 50. For example, is the relative
benefit 10% of the way between the "bare-bones" and "gold-plated" concepts
or 25% or 40%, etc.? Once a relative benefit score is obtained, the focus
shifts to conceptualization #3 on the variable, which must have a relative
benefit score between that for conceptualization #2 and the gold-plated
conceptualization. In answering these and related, relative-value ques-
tions, & subjective benefit scale is developed for each level of each
variable. [Note: A MAUA hierarchy with utility functions and weights can
be used too, although it is obviously a more complex approach than obtain-
ing pai;ed-comparison benefit values.]

&

R?lative importance weights are then used to Iindicate the relative
benefié of improving (from the initial level to "gold-plated") on each
variabie (i.e., A vs. B vs. C in our example). For example, let’s assume
that going from the status quo of "no expert system” to "gold-plated on
variable A was thought to be twice as beneficial as doing so on both
variables B and C, which are equally important. If the relative importance
weights sum to 100, then the relative weight on variable A would be 50 and
the relative weights on variables B and C would be 25. The overall benefit
given to any level on any variable can be compared to that for any other
level of another variable (except the initial level for a variable, which
is set to zero to indicate it's the starting point) by multiplying (a) the
relative weights for the variable and (b) the benefit value for the level
within the variable. For example, let’s assume that conceptualization #3
for variable A had a within-variable benefit value of 50. Since, in our
example, variable A has a relative weight of 50 and variable B has a
relative weight of 25, conceptualization #3 on variable A has the same
overall benefit as the gold-plated concept on variable B because 50 x 50
equals 100 x 25. ([Note: The overall benefit of each level for each
variable in the design could be assessed directly using paired comparison
techniques. However, experience suggests that participants find the above

procedure easier, particularly when there are many levels and variables.]

3-24

In addition, a cost estimate also needs to be obtained for each
conceptualization, that is, for each level of each variable. The cost
estimate for the first level on each variable is important only in provid-
ing a reference point, for the analysis assumes that the starting point (or
first package of expert systems) is represented by the initial level on
each variable. The cost estimates could be in absolute dollars or in
"relative costs," depending upon which one the participants (or more
likely, the personnel responsible for software cost estimation) feel more
confident in using in the analysis. [Note: Conceptually, the cost could
be any resource with allocation constraints.] At this point one can
calculate the overall incremental benefits and costs of moving from one

level to another on each variable.

The goal is to maximize the benefit for the set of expert systems at
any given level of total dollar costs—that (s, to define the "efficient
frontier," such as the hypothetical one shown in Figure 3-7. Starting with
the first level on all the variables, which we have defined as the set of
expert systems with the lowest possible benefit relative to any other set,
we will follow three steps. First, we will calculate the incremental
change in benefit to change in cost ratio for each level of each variable
as one moves from the lowest to the highest level of each variable.
Second, we will order the levels on the basis of this ratio. Third, we
will sequentially select the level with the highest change in benefit to
change in cost ratio. Thus, each incremental point on the efficient
frontier will represent a set of expert systems that was identical to the
one that preceded it except for one change, that remaining level with the
highest change in benefit to change in cost level at that time. ([Notes:
If the analysis shows dips in the level-to-level analysis, incremental
benefit-to-cost ratios are calculated across multiple levels. Although
this algorithm may not derive all tke points on the efficient frontier, all
the points derived are on the frontier. Moreover, experience has shown
that it is easier than other approaches (such as integer programming) for
Jderision makers to understand the algorithm and follow its implications.
Finally, it can be readily programmed for, and will operate quickly on,

personal computers.]

3-25

100+ .

86

o
Q

e e @ i o e A o e am fm f av m — e o e o o e P

.

AN MmZm
5
]

L 3

1
o

Figure 3-7: A Hypothetical Efficient Frontier

The MAUA-based cost-benefit analysis can also be used to jidentify the
most beneficial configuration of components of a particular expert system
at different levels of cost. In this case, the different components of the
expert system represent the different variables. The different potential
levels of sophistication of each component represent the levels on the
variables. Relative benefit values are obtained within and between
variables, and costs are obtained for each level. And the algorithm
described above is used to generate points on the efficient frontier

indicating the package of component parts providing the most benefit at
different levels of total cost.

CONSTRUCTING QUESTIONNATIRES TO ELICIT OPINIONS
Thus far, Chapter 3 has considered a number of different subjective

test and evaluation methods, most notably MAUA. The focus on these methods

has been toward helping the sponsoring and development team: (a) identify

3-26

evaluation criteria early in (if not prior to) development to guide the
development (as well as testing) process; (b) convert test scores into
utility measures; and (c¢) utilize explicit procedures for welghting, or in
some other fashion integrating test results on all the criteria into an
overall assessment of the expert system’s adequacy. As important as
obtaining an overall score for the expert system is assessing the expert
system’'s weaknesses, particularly for important criteria. This feedback
can, in turn, guide subsequent development efforts and, thereby, effective-

ly integrate test and evaluation into the development process.

In this section of Chapter 3, we consider the construction of subjec-
tive questionnaires for obtaining potential users’ opinions about che
expert system. In particular, we are concerned about users’ judgments of
the expert system’s performance and usability. Questionnaires were used to
obtain these judgments for the DART expert system described in Chapter 1.
In this section, we want to go over the basic issues inherent in question-
naire construction. Throughout the discussion we will assume that the
users’' responses to the questionnaire are used to score the expert system
on subjective criteria in the evaluation hierarchy, such as in the one

described in the next section of this chapter (and displayed in Table 2-1).

We begin this section by first defining twe critical measurement
concepts, reliability and validity. Rellability means that the measurement
instrument (e.g., questicnnaire) gives the same results when it is used on
two different occasions., The key idea here is "replication;" one can
repeat the measurement process with the same result. A basic assumption is
that there have been no changes in the object being measured (e.g., the
expert system) in-between the two measurement periods. By "validity" we
mean that the instrument is measuring what it is supposed to measure. A&n
instrument can be reliable (i.e., it produces the same results upon
replication), but invalid (i.e.. it reliably measures the wrong thing).
However, an instrument cannot be valid if it is totally unreliable because
thie latter implies that it will give very different answers when used to

measure the same thing on two or more occasions.

3-27

We now consider how these two concepts were assessed for the question-
naire used in the test and evaluation of the DART expert system. (For more
information, see Adelman et al., 1985.) Prior to doing so, however, we
will review the characteriscics of the DART questionnaire. These are the
characteristics you should have in your questionnaires, assuming, of
course, that you use the same kind of questionnaire to obtain users’
opinions about an expert system. It is important to note that there are
other types of questionnaires. 7Two other types will also be overviewed

later in this section.

Characteristics o he D uestionnai

As you remembeyr, the DART questionnaire was designed to obtain users’
opinions about DART with respect to the evaluation criterlia identified in
Table 1-1. The questionnaire had a total of 121 questions. Most of the
questions assessed the bottom-level attributes in Table 1-1. However, 6
questions directly assessed overall utility (node 0.0 in Table 1-1), 2
questions directly assessed decision process quality (node 3.3 in Table 1-
1), and 3 questions each assessed the quality of the training sessions and
test scenarios (neither of which were evaluation criteria in Table 1-1,
although important to the test and evaluation team to assess for more

general reasons).

Two questions from the DART questionnaire are presented below 50 that
one can get a feeling for the kinds of questions used in the questionnaire.
The first question measures "response time" (attribute #1.2.1.4 in the
hierarchy); the second question measures "acceptability of time for task

accomplishment” (attribute #2.1.1.1).

I had to wait too long for the DART aid to respond to my inputs.

Very Neither Very

Strongly Disagree Strongly

Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10
3-28

Use of the DART aid will not slow down the identification process now
used in the Tactical Air Controcl System.

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 p 3 4 5 6 7 8 9 10

As can be seen, all questions required the participant to respond on a
eleven-point scale from 0 (very strongly disagree) to 10 (very strongly
agree), with 5 being "neither disagree nor agree."” This type of scale is
referred to as a Likert (1932) scale after Rensis Likert, the psychologist
who first developed 1t. The length of the scale (i.e., eleven points) and
the end points (i.e., 0 and 10) are arbitrary. We could have used a 3-,
5-, 7- or whatever point scale we wanted. We chose an eleven-pcin* s5cale
in order to give the users plenty of room to express the extent to which
they agreed or disagreed with each question which was written in the form
of a statement. The use of only positive numbers for the scale values was
also arbitrary. We could have used negative numbers to represent disagree-
ment and the O-point to represent "Neither Disagree Nor Agree." We chose
to use positive numbers because, as was illustrated by the first question
above, sometimes we wanted the user to disagree with the statement in order
to score DART highly. Therefore, we were concerned that the use of

negative numbers might be confusing.

There were two or more questions for each MOE criterion in an effort
to achieve greater confidence in the criterion scores. 1In addition, this
permitted us to calculate a split-half reliability measure, which is
described in the next subsection. The number in the parentheses to the
right of each bottom-level attribute in Table 1-1 indicates the number of
questions assessing it. The actaal number depended on the availability of
previously written questions assessing the criterion (e.g., from Sage and
White, 1980), the ease in writing “different-sounding" questions for the
criterion, and its depth in the hierarchy. We tended to use more questions
when we were measuring bottom-level attributes high in the hierarchy. For
example, we used seven questions to measure "decision accuracy” (attribute
#3.1), but only two questions to measure “response time” (attribute
#1.2 1.60.

3-29

Haif the questions for each criterion were presented in each half of
the questionnaire in an effort to prevent the questions’ order in the
questiommaire from affecting the attributes’ scores. And, as will be seen,
this procedure is also appropriate for calculating a split-half reliabilicy
measure. In most cases, a high score indicated good performance, but
typically for one question measuring each criterion, a 1ow score indicated
good performance in an effort to ensure that the participants paid careful
attention to the questions. Prior to calculating attribute scores, the
users’ responses were rescaled as if the question were asked in a positive
fashion. DART's score on a bottom-level attribute was the mean score of
the participants' responses to the questions assessing {t. Values for
criteria moving up the hierarchy were the mean score for the criteria below

it.

As we noted in Chapter 1, by averaging lower-level attribute scores to
obtain upper-level criterion scores, one is giving each criterion equal
weight at its place in the hierarchy. For example, by averaging the mean
scores for "training” (attribute #1.1.1), "work style" (attribute #1.1.2),
and "operational needs” (attribute #1.1.3), each of three attributes
received a relative weight of 0.333 in determining the score on "match with
personnel” (attribute #1.1). Although it was quite possible that the
participating domain experts may have thought that certain bottom-level
criteria were more important than others, members of the test and evalua-
tion team thought it inappropriate to have the (DART) experts differential-
ly weight these criteria at the time of the evaluation because we wanted to
use the same weights for evaluating all five prototypes being developed on

the contract in order to provide a common evaluation baseline.

In closing this subsection, we want to emphasize that you should keep
the following points in mind when developing the questions for your
questionnaire. First, remember that people do not like completing ques-
tionnaires. Some people complete them as quickly as possible, often not
reading the questions carefully. Other people seem to scrutinize every
word and nuance in the question, just trying to find something wrong with
it. Consequently, try to keep the questions short and to the point. Do

not use qualifying phrases in a question if you can help it because

respondents may inadvertently respond to the qualifying phrase instead of
the principal one. In a similar vein, minimize the use of the word "not"
because respondents sometimes misinterpret it or fail to recognize {t when

they are rushing through a questionnaire.

Second, have a colleague critically review your questions. Ask that
colleague to suggest better ways of asking any questions they are having
trouble answering. Third, pilot-test your questionnaire with representa-
tive users before you actually use it to obtain users’ opinions of an
expert system. Ask the respondents to think aloud when they answer the
questions so you can assess whether others are interpreting the questions
in the way that you intended. If they have no objections, tape-record the
session so that you don’t have to rely on your memory. Revise questions
that are being misinterpreted by the pilot participants during the session
to see if you can reword them in a way that removes the ambiguities.
Continue pilot-testing the questionnaire until most (if not all) questions

are interpreted in the way you intended.
ab Valid e tioppaire

We now turn to consider how we assessed the reliability and validity
of the DART questionnaire. Since only four technical representatives and
three substantive domain experts participated in the DART test and evalua-
ticn, the reliability and validity assessments used the responses from all
the technical representatives and domain users who participated in testing
and evaluating the five decision-aiding system prototypes developed on the
contract. Remember, there were two evaluation sessions for each system.

In all cases, technical representatives from the Rome Air Development
Center (RADC) participated in rhe first session, and Air Force substantive
experts in the decision task for which the system was designed participated
in the second session. In general, each session followed the same format:
the first day was dedicated to providing a detailed overview of the system;
the second day was dedicated to providing the participants with "hands-on"
training in using the system; on the third day the participants worked test

problems with and without the system; and on the fourth day the partici-

3-31

pants completed the questicnnaires and discussed the system prototype with

members of the test, development, and sponsoring teams.

In total, 15 Alr Ferce substantive experts aad 13 RADC technical
representatives participated in the sessions. The substantive experts, all
of whom were selected by the Tactical Alr Command, had years of experience
in the tactical decision-making area for which the system was developed;
most had minimal computer science training. In contrast, the technical
representatives had minimal, if any, substantive expertise in the areas for
which the aids were developed. Eleven of the technical representatives
were Alr Force personnel who, in most cases, had just recently received an
undergraduate degree and taken computer science coursework; the other two
technical representatives were civilians with technical backgrounds who had
worked on RADC projects for at least two years. In a number of cases, the
same technical representative participated in more than one evaluation. In
order to ensure that the results presented below were not skewed by the
opinion of these participants, we used only the questionnaire responses
from thelr first evaluation session. Finally, it should be mentioned here
that the tecnnical representatives' responses for one of the five =ystems
were not included in the analyses because the system was r-t functioning
sufficiently well to permit an accurate assessment of its strengths and

weaknesses.

Assessing the Reliability of the DART Questionnaire

Split-half reliability and test-retest -eliability measures were
calculated. Split-half reliability is a measure that relates the two
halves of the questionnaire. A split-half reliability measure was possible
because two or more questions were used to assess the participants’
responses for each attribute in the MAUA evaluation hierarchy, and the
questions were divided between the two halves of the questionnaire. If the
questionnaire was a reliable measurement instrument, then there should be a
high correlation between the two halves of the gucstionnaire, for presum-
ably the questions were measuring the same attribute. The following
formula from Gulliksen (1950) was used to calculate the split-half relia-
bility of the questionnaire:

3-32

1 - ' [3-2]

where

r;x is the split-half reliability of the questionnaire,

si is the variance of the first half of the questionnaire,
1

si is the v. “lance of the second half of the questionnaire, and
2

52 is the variance of the sum of the scores on the two halves of the
questionnaire (x = x; + %,).

The split-half reliability measure was 0.741 for the substantive experts
and 0.707 for the technical representatives; both reliability measures were
significantly different than zero at the p < 0.01 level (df = x; = 58 - 2 =
56).

The most conservative measure of a questionnaire’s reliability is
obtained by re-administering the questionnaire a second time after a month
or wore has passed, and then correlating the participants’ responses to the
questions. Three of the technical representatives, each for different
prototypes, agreed to complete the questionnaire a second time. Six to
eight weeks separated the second completion of the questionnaire, in an
effort to ensure that the participants remembered the prototypes’ general
characteristics but not their responses to specific questions. The three
test-retest correlaticns were 0 44, 0,61, and 0.56. Although these
correlations mav seem low to the rcader. 1t must be remembered that, unlike
questionnaires assessing personality or attitude traits which are presumed
to be stable and unchanging, we were assessing the participants’ memory of
tiw. system's many characteristics, which is presumed to be wore unstable
and subject to change. All three correlations were significantly different

from zero at the p < 0.01 significance level (df - x, + x, - 2 = 114},

3-33

These results indicate that the questionnaire is a reliable instru-
ment, that both halves are reliable, and that if the questionnaire is used
to measur=e an expert system at two different times and there is no dif-
ference in the system in the interim, the tester will obtain the same

opirions from test participants.

Assessing the Validity of the DART Questionnajire

Three different fo- ,f validity are important for questionnaires.
First, face (or content) validity implies that, at least on the surface, a
questionnmaire appears to be measuring what it is supposed to be measuring.
Face validity was assur~d in our questionnaire by having a retired Air
Force lieutenant colonel—who was a substantive expert in the tactical
decision-making problems for which the prototypes were developed—write the

questions,

Second, predictive (or external) validity implies that the instrument
is consistent and agrees with another established measure of the same
attribute. To measure the questionnaire’s predictive validity, we used the
same basic approach as that used by Bailey and Pearson (1983); we corre-
lated the participants’ global evaluations of the prototype with the
results of the questionnaire. Specifically, we correlated the partici-
pants’ mean responses to the six questions directly asking about the
prototype’s overall utility with the participants’ scores for the proto-
types based on the MAUA evaluation hierarchy (i.e., the value for node
0.0). The correlation for the 15 experts was 0.85 (p < 0.01, df =~ 13), and
the correlation for the 13 technical representatives was 0.60 (p < 0.05, df
- 11).

Third, construct validity examines the theoretical adequacy of the
components of the construct being measured, typically by comparing the
scores obtained from two separate measuring instruments aimed at the same
construct. We reasoned that if the questionnaire had construct validity,
then it should be possible to relate aspects of the system prototypes that
the participants indicated they liked and disliked in the open-ended

questionnaire to the attributes in the MAUA hierarchy that were scored high

3-34

and low, respectively. Two specific steps were required to calculate a
measure of construct validity. First, for each prototype, we matched those
aspects of the prototype that the substantive experts indicated they liked
or disliked in the open-ended questionnaire to specific attributes in the
MAUA hierarchy. Second, for each prototype, we rank-ordered the attributes
according to their mean score on the eleven-point scale. We found that 78
percent of the matched attributes fell intc either the top 30 percent or
the bottom 30 percent of the distribution of rank-ordered attributes,
thereby indicating a relationship between both of our questionnaires and

construct validicy.

Other es o uest res

In this last subsection, we will consider two other types of question-
naires. The first type is the traditional open-ended gquestionnaire; the
second type is designed to directly score the system on the bottom-level
attributes in a MAUA hierarchy. Although we will not provide additional
analysis here, the reader should remember that reliability and validity are

also important concepts for these questionnaires too,

An open-ended questionnaire is analogous to an interview in that it
gives respondents an opportunity to say what they want to say. In fact, an
open-ended questionnaire should be given in conjunction with an interview
or round-table discussion. The use of open-ended questionnalres, inter-
views, and discussions {is important because we don't want to loose critical
information simply because we didn’t ask the right question. More impor-
tantly, we want to give the users an opportunity to elaborate on their
numeric answers. For example, we want them to tell us why they gave the
system a "0" on "usability" or “"confidence" or whatever. Moreover, we want
them to tell us what changes, in their opinion, would improve the system's
scores on those criteria for which it is scoring poorly. Although the
numbers tell us how the expert system is scoring in the users' eyes, {t
Anesn’t tell us why this is so. To obtain the latter, one needs to use

some form of open-ended questionnaire or interview.

The ten guestions used in the DART open-ended questionnaire are pre-
sented below. We provided space after each question for the users’
responses, although it 1s omitted below. In examining the questions you
will notice that, while we wanted the users to tell us (a) what they
considered the system's strengths and weaknesses to be, and (b) how to
improve the system, we still gave them some direction in order to focus
their responses. In addition, we used the questionnaire as a means to

document the users’ experience and background.

1. What did you like and/or find most useful about the DART aid?

2. What did you dislike and/or find to be a hindrance about the
DART aid?

3. What specific changes and/or modifications would you suggest
regarding the following characteristics of the DART aid? Write
NONE if you have no suggestions for improving the particular
characteristics:

a) regarding the aid's general technical approach to iden-
tification, and its degrees of belief;

b) regarding the different types of expert knowledge stored
in the aid;

c) regarding the value of the explanation mechanism in the
DART aid;

d) regarding the user Interface with the DART aid;
e) regarding the DART’s graphic displays.

4. What would you envision to be the future potential of this aid
in your present or most recent operational environment. Why?

5. Were the Iinstructions sufficient to enable you to efficiently
use this aid? Comments?

6. Where do you feel a second-generation, operational version of
the aid would receive good acceptance. Why?

7. What would you envision to be the future training potential of
the DART aid? Why?

8. Please state your experience in performing the task you
performed here today. Also, please state relevant duty
assignments, and the number of years you performed them.

3-36

g. Please state your level of experience and training with
computers and decision aids.

10. Please give any other comments that you feel are relevant to
this questionnaire.

The second type of questionnaire is designed to generate utility
scores for the expert system on the bottom-level attributes in an MAUA
evaluation hierarchy; that {s, the user scores the system on a 0 to 100 (or
0 to 1.0 or 10 or whatever) value scale for each of the bottom-level
attributes. For example, instead of answering a series of questions about
the system’s response time, the user would score the acceptability of the

system’s response time on a 0 to 100 acceptability scale.

It is important to note at the outset that this type of questionnaire
is difficult for users to complete, for it represents the utility scoring
part of MAU analysis but without access to an analyst or computer program.
By "utility scoring" we mean that it not only involves scoring the expert
system on a subjective scale (e.g., for "ease of use"), but then translat-
ing that performance score into a utility score (e.g., the acceptability of
the system’s "ease of use"). In the approach described below, accep-
tability is defined relative to the extent that the system meets the user’s
performance expectations for a criterion. Here we will briefly introduce
some important concepts to keep in mind when developing such a question-

naire.

Figure 3-8 presents an example of a questionnaire for obtaining
utility scores on the bottom-level attributes measuring "Performance:Judg-
ment" and "Usability" in Table 2-1. 1In particular, Figure 3-8 is request-
ing that the user indicate the adequacy of the system’s "Response Time
Performance" in terms of the amount of time the expert system took to
respond to the operator’s inputs and provide outputs. The "50" point means
that the system fully meets the user’s performance expectations for the
system on the evaluation criterion being considered (in keeping with the
scale recommended in the last section of this chapter). The "0" means the
system fails the performance expectaticns. The "100" means the system not

only fully meets the performance expectations, but greatly exceeds them.

3-37

1. RESPONSE TIME PERFORMANCE .

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expeciations
40
30
20
10
0 Fails 10 Meet Performance Expectations

. Have you previously expressed performance expectations for this criterion? (Circle “ves”" or
"no.")
Yes No

. Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes No

. WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

. NUMERICAL SCORE:

. REASONS FOR SCORE:

Figure 3-8: An Example of a Questionnaire for Obtaining Utility Scores .

3-38

More generally, scores below "50" mean that, in the user’'s judgment,
the system was in some fashion deficient on the criterion; scores above
"50" mean that the system was providing added value on the criterion. The
scale permits the user to numerically score the level of deficiency or the
level of added value. For example, let’'s consider evaluating the system on
Response Time. If the system met the user’s performance expectations for
an acceptable waiting period between the inputs and the system’s response
to them, then the user would give it a score of "50." Llet's assume that
the user considered the system’s response time deficient (i.e., less than
"50"), but not a complete failure (i.e., greater than "0"). Then the
question is, "What is its numerical level of deficiency between O and 507"
If the deficiency was very minor in the user’s mind, then the score would
be close to 50 (e.g., greater than or equal to 45, but less than 50). On
the other hand, if the deficiency was very great but still not "0," then
the score would be close to 0 (e.g., less than or equal to 5, but greater
than 0). 1If the user thought the level of deficiency was about halfway
between meeting the expectation and failing it, the user would give the
system a score of 25; if it was a quarter-of-the-way, he or she would score
it 12.5 and so forth. In short, the user would use the bottom-half of the
scale to numerically specify the expert system's level of deficiency on the
evaluation criterion. 1In addition, of course, testers need to know the
reason(s) for the user’'s score. Consequently, space is provided to tell us
what the user’s performance expectations were, assuming he or :t:e had ones,

and the reasons for the score on the criterion.

In a similar fashion, the user can use the scale between 50 and 100 to
numerically specify the level of "added value" performance on the cri-
terion. For example, if the system barely exceeded the user’s performance
expectations for Response Time, then it would receive a score slightly
above 50. If it considerably exceeded the performance expectaticns but was
not a 100, it might receive an 85, 90, 95, etc. If the degree of added
value benefit provided by the system was about halfway between meeting the
aser’s performance expectations and greatly exceeding it, then you would
score it 75. If the added-value benefit was a quarter-of-the-way, the
system would receive a score of 62.5; if it was three-quarters, it would

receive a score of 87.5 and so forth, Again, it is important to know the

3-39

system is providing added-value on the criterion—that is, the reasons for

the score.

The questionnaire would contain such a scoring sheet, or some deriva-
tive of the above approach, for each bottom-level attribute in the MAUA
evaluation hierarchy requiring the user's opinion of the expert system. As
you can imagine, these are not easy judgments to make. As a means of
helping users, we first ask them to think about their performance expecta-
tions for the system on the criterion. What level of performance do they
consider acceptable (i.e., a score of "50")? VWe give them room to write
their performance expectations on the scoring sheet. We also give them an
opportunity to indicate (a) whether they have previously expressed perfor-
mance expectations for the criterion and (b) whether they have heard anyone
else express performance expectations. Then we ask that they provide a
numerical score, and the reasons for it, in the space provided. If they
cannot (or do not want to) score the system on a particular criterion, we
do not force them to do so. A number of omissions would indicate the
inadequacy of this type of questionnaire, and we would subsequently use the

Likert-type with open-ended questionnaires and/or interviews.

Summa

All the questionnaires we’ve considered here attempt to capture the
users’ opinions about the expert system. Open-ended questionnaires, inter-
views, and round-table discussions are important because they give users an
opportunity to indicate what they liked and disliked about the system, and
how they would improve it. The short-answer, Likert-type questionnaires
are ilmportant because they attempt to quantify the users' opinions. 1In
particular, by building the short-answer gquestionnaire around an MAUA
evaluation hierarchy, this familiar type of questionnaire provides a means
for scoring the expert system on the more "subjective" attributes in the
hierarchy. Finally, the "utility" questionnaire attempts to go one step

further and translate the scores on these attributes into utility values.

With the Lilart-type questionnaire used in the DART test and evalua-

tion, we assumed a linear scale for converting the users’' responses (i.e.,

3-40

"scores") into utility values on the attributes. The utility questionnaire
does not make this assumption but, instead, attempts to directly assess the
utility values using the "50" point as a reference point. For example, a
user might give an expert system a score of "7" (using the 0 to 10 peint
Likert scale) on "response time." However that "7" may or may not actually
seet the user’s expectations for that criterion. By attempting to measure
the extent to which the system meets the user's expectations for "response
time," we are attempting to assess the value that the user places on the

expert system’s performance on this attribute.

In closing this subsection, it is important to emphasize that the type
of responses being elicited with a "utility" questionnaire, although dif-
ficult, are at the heart of quantifying the value that users place on the
expert system’'s performance for all the attributes, not just the more
subjective ones. Remember, "scoring” and "weighting" are two separate
steps in applying MAUA. The utility scale converts the expert system’s
scores on the different scales being used to measure the different at-
tributes (i.e., the proverbial "apples and oranges"”) into a common value
scale. The relative weights indicate the attributes’ relative importance.
How far one wants to go in the process of converting test scores into
overall utility scores is a critical question for the test and evaluation
team to consider. It is our opinion that one needs to implement the entire
MAUA process to most effectively focus expert system development on the
users’' objectives and, thereby, integrate test and evaluation into the

development process.

The Appendix of this volume contains both a Likert-scale questionnaire
and a utility-scale questionnaire that can be used in conjunction with the
MAUA framework presented below to test an expert system. These question-
naires are complete with instructions on their use, and they have been

designed according to the guidelines described above.

PONPOSED MAUA FRAMEWORK FOR TESTING AND EVALUATING EXPERT SYSTEMS

The rest of this chapter contains the description of our proposed MAUA

framework for testing and evaluating expert systems. The attributes in

3-41

this framework were developed iteratively by top-down decomposition of
important aspects of expert systems, and bhottom-up aggregation of software
quality metrics. The specific attributes included were identified as a
result of our own research and a review of related work by Ulvila et al.
(1987), Riedel and Pitz (1986), Rockmore et al. (1982), Kirk and Murray
(1988), Adelman et al. (1985), Klein and Brezovic (1988), and Tong et al.
(1987). The attributes described are generic and are potentially ap-
plicable to any expert system. However, the relative importance of an
attribute will be determined by specific features of the system and its
intended use. We discuss this more in Chapter 7. Similarly, the measure-
ment scales for the attributes may vary from one system to another, and the
proper measurement technique (subjective, empirical, or technical) will
vary from attribute to attribute and from system to system depending on the
nature of the test, the resources available for the test, the importance of
the attribute, and other conditions. We do, however, provide guidance for
developing measurement scales, and we present, in the Appendix, two
questionnaires that can be used to assess the system against judgmentally

determined performance attributes and most usability attributes.

In addition to being generic, the framework is also comprehensive. It
purports to address all important aspects of expert systems. In this
regard, it differs from most of the expert system verification, validation,
and testing work done to date, including that referenced above. Some
researchers are paying attention to assessments of an expert system’s
knowledge-base structure and content. Others stress the quality of the
system's answers. None of the other work addresses both of these aspects
and ties them together with service requirements and individual and
organizational usability. Still, specifics of an expert system or its

intended operation may require a tester to add a few unique attributes.

An experienced software tester will notice that one aspect of conven-
tioral software testing is left out of our framework—namely, software
design and coding standards of the type address by DoD-STD 2167, DoD-STD-
1679A, MIL-STD-1679, and JCMPOINST 8020.1 for conventional software.
Ulvila et al. (1987) attempt an application of these standards to Common

Lisp, a widely used expert system language. The fit is not especially

3-42

good, and we feel that the state of development of generally accepted
software engineering practice for expert systems is not yet developed
enough to have a codified set of good or acceptable design and coding
standards. Consequently, these items are not in our set of attiibute.. As
the field of expert systems matures, such standards may be developed and

they should be added to our framework at that time.

Chapter 7 demonstrates how this framework is used to pull the testing
effort together. A key aspect in "pulling it all together" is a four-step
appreach to using the framework in Figure 7-1 (which is a reproduction of
Figure 3-9). First, establish the relative importance of the different
major areas (the top level in the framework: knowledge base, inference
engine, "service," performance, and usability), then sub-areas, and then
attributes. This information is then refined into weights. Second,
examine each attribute, determine its measure, and determine how to collect
that information. Third, collect that information about the system being
tested. Fourth, process the Iinformation through the MAUA. Fifth, evaluate
the results by comparisons between actual results and the desired or

required results.

There are other views of software testing. These include: software
quality metrics, validation versus verification, and static versus dynamic
testing. The framework that we present is compatible with these other

views of testing as discussed in Chapter 8.

Framework and Attribute Definjtions

Figure 3-9 shows our MAU proposed framework for testing and evaluating
expert systems. The overall assessment of the expert system is composed of
five criteria: knowledge base, inference engine, service requirements,
performance, and usability. These are subdivided to the level of at-

tributes as described below.
KNOWLEDGE BASE. These attributes refer to the structure and content

of the expert system’s knowledge base. While the descriptions below are

phrased in terms of a rule base, analogous attributes would apply to a

3-43

'
+
| -

swiaisAs uadxg Bupenjead pue Supsay 40§ Hiomaweld NVYW Vv :6-€ @inbi4
INALINO/LNGN! @
ININOS
NOILVYINISIHIIY
JOAUREVIIOOY @
IYNLIONYILS S1Ns3Y
/S3HNA320Hd 40 ALTNBYLI4IDOV @
WNOILVZINVOYHO NOULOVEIIN
40 1OVdWI @ WNILSAS LHA4X3 INIHOVIVNYN
ONINIVBUSTINS 40 AONIHYISNYHL @ 30 ALNBVLdIO0OV @ g3rns3vnivid @
‘AYODIHOMWTTALS IOVH UNOIIVANI3S3Ud ISNI035v3 @ 387 O HINNYIW @
WHOM 40 1oV @ 40 ADVAO30Y @ JONIAIAINOT @ FSNFJOINIIXI @
TOVdN "
TYNOLLVZINYOHO [Nouvwviaa B zw%mwwmm,‘ { NONIGO | | 3mevauzsao)
3
3sve B g
3003 MONY 30 ALITIEBVISIOON - -
SININIHINO3Y TUNS - 304NOS 40 ADVNO3AY -
NOILYINIWNDOG - ALNGYid300V SON3 Qv3a -
SIN3NIHINOIY VIV] - NOILVINISIHJIH 3DQTMAONA - NOISITIONGD 3WVHOVIHNN -
S1VWHOd - $31NH 40 AOVHNOOV - SANTVA UNBILELLY TYOITH -
NOILVHDAINI WIISAS @ $10V4 40 ADVHNOOY - SINMVA
SHOWHI INdINO/INGNL - AOVHOOOY INLDI038d @ JINALLY OIONIHI4TUNN -
ONITONYH NOHLVAYHO3a - SNOLLY U SSINILINANDD YOO @
ONINNI/ISN IHALVIE - IADCIWONM OFHSLINATCH - STINYG HYNOHIO -
SNOSYIH 40 ALWOAD @ (3UYMOHYH) ALITNBYdYD - Q3YIA0D A1ZLITINOD S3INY DNILIITINOD -
SHIMSNV H0 ALVAD @ SVi8 @ (3UYMOEVH] ALTEVITIY - NOISRIONOO/NOILVYONGdY - S3INY A3WNSENS -
MSYL HSITdNOIAYOL3INIL @ ADVHNOOV @ SINIWIHINDIY IDVdS - SiNdNI G3HISAA TV - $3INY INVONNOIY -
INL ISNOJSIH @ a33d4S @ INILNNY - SSINILIT N0 TYNCILONNL @ AONILSISNOD WIOOT @
INIL dN-13ES -
1 JOVSN HIINIWOD @
—1 INIWDaNT L HLNYL ONNOYD ~ ALNVIHOd - _l IN3IINOD _ H IUNLONHLS _
NDIS2A - M
_» F L WILSAS HILNDWOD @ % u

[aumevsn | [3onvbodHad | [3omass. | [awona 3onauzan] [3sve 3oa3TMONY|
_ [_] g

TIVH3AO

- E

frame-based expert system. (See Hayes, 1981, for a discussion of the

logical equivalents of rule-based and frame-based systems.)

Structure

Logical Consistency. The following aﬁtributes would limit the consis-
tency (or correspondence) and efficiency of a knowledge base. Redundant
rules are rules or groups of rules that have essentially the same condi-
tions and conclusions. Redundancy can be due to duplicate rules or the
creation of equivalent rules (rule groups) by wording variations in the
names given to variables, or the order in which they are processed.
Subsumed rules occur when one rule’s (or group of rules’) meaning {is
already expressed in another rule (or group of rules) that reaches the same
conclusion from similar but less restrictive conditions. Conflicting rules
are rules (or groups of rules) that use the same conditions, but result in
different conclusions, or rules whose combination violates principles of
logic (e.g., tramsitivity). Circular rules are rules that lead one back to

an initial (or intermediate) condition instead of a conclusion.

Logical Completeness. A knowledge base is complete if it has no holes
or gaps in its logic. The following attributes indicate a logical incom-
pleteness. Unreferenced attribute values are values on a condition that
are not defined; consequently, their occurrence cannot result in a con-
clusion. Illegal attribute values are values on a condition that are
outside the acceptabie set or range of values for that condition. An
urreachable conclusion is a conclusion that cannot be triggered by the
rules combining conditions. Dead ends are rules that do not conncct input

conditions with output conclusions.
Content

Functional Completeness is the extent to which the knowledge base
addresses all domain conditions. All desired inputs: the knowledge base
can handle all input conditions that need to be addressed. Applica-
tion/conclusion completely covered: the knowledge base can trigger all

output conclusions that need to be addressed. Identified knowledge

3-45

limitations: the rules in the knowledge base can tell the user if input
conditions currently being processed cannot be addressed. Analogously, if
the expert system is such that a user can specify a conclusion i{n order to
identify the input conditions that would generate it (e.g., as in a
backward-chaining system), an expert system that was knowledgeable of its
limitations would tell users if a conclusion currently being processed as

input could not be addressed.

Predictive Accuracy. The following attributes address the accuracy
and adequacy of the knowledge base. Problems here may also be related to
problems of performance. Accuracy of facts: the quality of the uncondi-
tional statements in the knowledge base. Accuracy of rules: the quality
of the conditional statements in the knowledge base representing expert
judgment. Knowledge representation acceptability: vhether or not the
scheme for representing knowledge is acceptable to other domain experts and
knowledge engineers. Adequacy of source: the quality of the persons or
documentation used to create the knowledge base. Modifiability of know-
ledge base: the extent to which the knowledge base can be changed and the

control over that change.

INFERENCE ENGINE: the extent to which the inference engine provides
error-free propagation of rules, frames, probabilities, or other represen-

tation of knowledge or uncertainties used in the system.

"SERVICE" refers to aspects of the system (computer and others) in

which the expert will operate.

Comnuter System. Design: the extent to which the expert system runs
on the approved computer hardware and operating system and utilizes the
preferred complement of equipment and features. 1In some cases, the design
system will be stated in a requirements document; in other cases, the
tester may need to survey available equipment at the intended installation,
Portability: how easily the expert system can be transferred to other

computer systems.

3-46

Computer Usage. Se: -up time: the amount of time required for the
computer operator to locate and load the program (if any) and the time to
activate the program. Set-up time should be measured under the expected
operating conditions. Run time: the amount of time required to run the
program with a realistic set of input data. This attribute refers only tc
the time that the computer program takes to run; the time needed for the
user is under PERFORMANCE factors. Space requirements: the amount of RAM,
disk, or other space required by the program. Hardware reliability: the
percentage of time the computer system could be expected to be operating
effectively. Hardware capability: the computer system’s total amount of
RAM, disk, or cther space. Effect of feature use/jumping: the extent to
which moving from various parts of the program causes errors. Degradation:
how well the program saves data and analyses and permits continuation aiter
an unexpected program or system crash or power outage. Handling input
errors: the extent to which the program prohibits a program crash and

tells the user what to do after an input mistake.

System Integration. Formats: the extent to which the program uses
input and output formats that are consistent with the intended use. This
includes any mandated ¢n standard formats that are specific to the intended
user organization. Data requirements: the extent to which the program’s
dats requirements are consistent in content, quantity, quality, and
timeliness with those available to the intended user organization. The
expert system should also be able to interact with specified and appropri-
ate databases and communications systems. Documentation: the adequacy of
material regarding the program’s use and maintenance. Copies of computer
code and its supporting documentation should be complete and under-
standable, and should allow maintenance by the user organization. (All
applicable software documentation stzndards should be met.) Skill require-
ments: the extent to which the program can be operated by appropriately
skilled individuals. The appropriate skill requirement includes grade
level (for military enlisted, military officer, or civilian personnel),
users' technical bacl _round, and training requirements. The appropriate
level may be specified in requirements or may be determined by reference to
the organizational setting of its intended use and to the personnel

assigned fo that setting.

3-47

PERFORMANCE refers to the operation of the expert system and the user.

It includes both comparisons with ground truth and Judgmental assessments.

Performance against Ground Truth. Speed: the amount of time it takes
a user working with the expert system to solve representative problems.
Accuracy: the degree of overlap in the distributions of belief values when
the hypothesis is true versus false (see Chapter 5). Blas: the difference
in the proportion of false negatives (hypothesis is true but system says
false) to false positives (hypothesis is false, but system say it's true)

(see Chapter %).

Judgmental Performance. Response time: the judgments of users
regarding the adequacy of the amount of time the expert system takes to
react to inputs. Time to accomplish task: the judgments of users regard-
ing the adequacy of the amount of time required to perform the task when
using the expert system. Quality of answers: the judgments of users and
experts regarding the system’s capability. Quality of reasons: the
judgments of users and experts regarding the adequacy of the system's

justification for its answers.

USABILITY is the extent to which the expert system, or parts of the
expert system, is used, is acceptable to individuals, and is acceptable to

the organization.

Observable Usability includes aspects of usability that a tester can
observe (or a system can record) during a test without asking the test sub-
jects. Extent of use: how much users employ the expert system to perform
the task (e.g., the proportion of time that the system was used to
accomplish tasks assigned in a test). Manner of use: the way in which
users employ the system and its features, including the procedures to
access different modules, the way that intermediate and final ocutputs are
incorporated into the user’s results, and the use of interfaces. Features
used: the extent to which different aspects of the expert system are

employed by users.

3-48

Opinions about Usabiliry. Confidence: how confident users feel in
taking actions based on working with the expert system. Ease of use: how
easy users judge the system is to use afcer they nave completed training
and become familiar with the system. Acceptability of person/machine
interaction process: the extent to which users assess that they and the
system are performing the tasks or activities for which they are best
suited. Acceptability of results: the users’ judgments regarding the
adequacy of the system’s capability. Acceptability of representation
scheme: the users’ judgments regarding the adequacy of the system’s way of
presenting knowledge. Input/output: the user’'s judgment about the
adequacy of the extent, display, and manner of accessing the expert

system’s input and output,

Scope of Application: the users’ judgments regarding the adequacy of

the expert system in addressing domain problems.

Explanation. Adequacy of presentation and trace: the users’ judg-
ments regarding the acceptability of the system’s presentation of its
reasoning process. Transparency of expert system: the extent to which the

system’'s reasoning process is clear and understandable to its users.

Organizational Impact. Impact on work style, workload, skills, and
training: the judgments of users regarding the impact of the expert system
on how they do their job, or the skills and training required to perform it
effectively. Impact on organizational procedures and structure: the judg-
ments of users regarding the impact of the expert system on the organiza-

tion’'s operations.

Measurement Scales for Attributes

Appropriate scales for the attributes may differ from one expert
system to another. Although it is impossible to set scales that will apply
to every expert system in every operating condition and every intended use,
we can suggest scales that the tester should consider. These are given
below. Some suggested scales are simple "Yes or No" categorizations,

others are natural units such as minutes, still others are percentages.

3-49

These may be helpful in establishing consistent frames for assessing the
performance of a system that is being tested. We have avoided guidance on
specific criteria of acceptability (e.g., "set-up time should be less than
10 minutes") because such criteria depend critically on specifics of the
expert system and its intended use. We feel that generalizations of this
nature would not be supportable. In general, these scales should be set
before a test is begun. In addition, the relationship between performance
on the scales and the utility of that performance should also be estab-

lished, for example as discussed in the following section of this chapter.

KNOWLEDGE BASE

. Logical Consistency:

- Redundant Rules: Percentages. The tester will examine the
rule base and determine the percentage of individual rules and
rule sets that are redundant. The tester may be able to
perform a manual walk-through of small rule bases, but use of
multiple software testers is better because the tedious nature
of the task will no doubt result in errors. If an automated
"static tester" were not available for a large rule base, some
sampling procedure would be required.

- Subsumed Rules: Percentages. Same rationale as that presented
for "redundant rules."

- Conflicting Rules: umber. Our definition was that conflict-
ing rules used the same (or very similar) initial conditions,
but resulted in either different conclusions, or violations in
logic. 1In contrast to redundant or subsumed rules, which
affect system efficiency, conflicting rules could well result
in bringing the system to a halt unless there is an effective
conflict resolution mechanism; at the least, it results in a
logic error. Unless the initial conditions for conflicting
rules are extremely rare, even 1 or 2 conflicting rules (or
rule sets) that essentlally crash the system may be unaccep-
table even though thelr percentage in the rule base may be
extremely small.

- Circular Rules: Number. Same rationale as for "Conflicting
Rules."

. Logical Completeness:
- Unreferenced Attribute Values: Number, because the effect is
on syster effectiveness, not efficiency. (his assures uno

the unreferenced attribute values could occur in the operation-
al environment. If they cannot, then they are more like

3-50

"Unnecessary I1f Conditions," affecting the efficiency with
which the system examines the rule base.)

- Illegal Attribute Values: [Numper. Same rationale as for
"Unreferenced Attribute Values.”

- Unreachable Conclusion:; Numpber. Same rationale as for
"Unreferenced Attribute Values."

- Dead Ends: Number. (Note: Effectiveness vs. efficlency con-
cern.]

Functional Completeness:

- All Desired Inputs: Number. This again addresses effective-
ness. It should be remembered that this "Functional Complete-
ness” assessment is made by reference to a requirements
statement, or, if that does not exist, by domain experts.
Consequently, each viclation on this attribute may need to be
examined because even one or two input omissions may have a
significant impact on the utility of the system. The tester
should consider placing a threshold of "no omissions" on this
attribute.

- Application/Conclusion Completely Covered: Number. Same
rationale as for "All Desired Inputs."

- Identified Knowledge Limitations: Yes or No. Most likely, the
expert system either claims to have this capability or it does
not, and the feature either works or it does not.

Predictive Accuracy

- Accuracy of Facts: Number. Each "inaccurate fact" needs ex-
amination in order to assess the utility score on this at-
tribute. Accuracy should be determined by reference to an
acknowledged source.

- Accuracy of Rules: Nugber. This can usually be determined
only by an expert or, preferably, by a group of experts. Each
"inaccurate rule” needs to be examined to assess utility score
on this attribute.

- Knowledge Representaticn Acceptability: Yes or No. The imple-
mented knowliedge representation scheme is acceptable or not to
other domain experts and knowledge engineers. The tester may
want to get the opinions of several knowledge engineers and
domain experts, if possible, for this assessment. "Other"
knowledge engineers might conclude, on either effectiveness or
efficiency grounds, that (a) an inappropriate representation
scheme was used, or (b) that an appropriate scheme was not
implemented well. Such assessments may be particularly
jmportant when the expert system is in the prototype stage.

3-51

"SERVICE"

Adequacy of the Source: Yes or No. 1t is possible for a
source to provide accurate information, but for it to be so
limited as to be inadequate. This attribute will most likely
require the opinions of a domain expert or panel of experts.

Modifiability of Knowledge Base:

-- Control Over: Yes_or No. A software tester can assess
whether accessibility to the knowledge base is controlled
or not. A requirements statement, sponsoring agency,
users, and perhaps security analysts and domain experts
may be needed to assess whether the level of control is
acceptable or not.

-- Expandability (by human/machine): Yes or No. Again, a
tester can assess whether the knowledge base can be
increased (1.e., expanded), decreased or, in general,
modified by humans and, perhaps most interestingly, by
machines. A requirements statement (or the system's
sponsoring agency) may provide an assessment of whether
such expandability is desirable. Domain experts working
with AI specialists would probably be required to assess
whether the changes were acceptable. ([Note: Accept-
ability, in terms of performance, could be determined by
statistical analysis of test cases where subjects changed
the knowledge base.]

Computer System:

Design: Yes or No. Consistent with the definition, the expert
system either runs on the approved computer hardware and
operating system (and utilizes the preferred equipment and fea-
tures) or it doesn’t. 1If it does, then it passes. If it
doesn't, then it fails; the utility score (e.g., between "0
and "50") would depend on the type of incompatibility problems
found by the software tester. [Note: If the system scores "0"
on "Design," which means that it does not run on the approved
hardware and operating system, then its values for "Set-Up
Time," "Run Time," "Space Requirements," etc. are all tied to
the hardware the system does run on. For an early prototype,
this may be quite acceptable, for "Design" may have a low
weight. However, in the later stages of development, there may
be a noncompensatory threshold rule where a "O" on "Design"
results in an unacceptable score overall.]

Portability: Yes o o fo omparable machines. For example,
if the expert system was developed for an IBM AT, then it would
"pass" on portability if it could run on AT-compatibles of
similar power. If it could also run on an IBM PC (or compati-
bles), then it would get a utility score greater than "50,"
depending on whether it ran with all irs features. I[f it

3-52

couldn’t run well on an AT-compatible, it would receive a score
less than "50." If {t couldn’t run at all on an AT-compatible
(or a PC), it would get a score of "0." The same logic holds
for mainframes, and for poing between mainframes and personal
computers. [Note: It is possible that the system is portable
with one type of hardware, but not another. The tester should
refer to any statement of requirements to determine the range
desir2d. The hnardware "types” would receive weights to obtain
a total score.)}

. Computer Usage:

- Set-Up Time: Miputes. The software tester may want to
calculate the average and standard deviation for this at-
tribute. However, that requires that the software tester
perform the set-up a number of times (e.g., 10). The amount of
time required for such repetition, particularly for measuring
other attributes (e.g., "Run Time" or "Ground Truth Perfor-
mance") is probably unacceptable unless the attribute is very
important.

- Run Time: Minutes. The tester should record this for all test
cases (to the extent possible) and may use statistical sum-
maries (e.g., mean and standard deviation) in the assessment.

- Space Requirements: The amount of RAM and disk space required

to run the system. Standards of acceptable size may be stated
in a requirements document. Otherwise, acceptable sizes might
be determined by the tester based on the total available.

- Reliability (Hardware): Percentage of time in a 24-hour day
(or during specified periods) that the computer (i.e.,, hard-
ware) is operating effectively. [Note: The tester might want
te expand the definition to include software if the expert
system requires distributed databases that require periodic
updating and possible "down time," independent o.” the hard-
ware. |

- Capability (Hardware): The computer system’s total amount of
RAM and disk space. The importance of this will be related to
how close the expert system comes to using all available space.

- Feature Use/Jumping: b and e). Each case where
moving from one part of the program to another caused an error
would have to be examined because of its potential effect on
system effectiveness.

- Degradation (Graceful?): ber (and e). The concern is on
the effect of ungraceful degradation on effectiveness. In some
operational environments, even one ungraceful degradation would
be unacceptable. This attribute might also be measured on a
"Yes or No" scale on the assumption that the system should
degradate gracefully, regardless of the cause precipitating the
system crash or power outage.

3-53

Handling Input/Output Errors: Number (and type). Same
rationale as for "Degradation (Graceful?)." This could also be
"Yes or No" on the assumption that the system could (or
couldn’t) tell the user what to do after an input mistake, but
it's possible that this capability could exist in some modules
and not others.

U Sysiem Integration

Formats: Number (apd type). Identify all inconsistencies with
input and output formats specified in the requiremencs document
or other appropriate source.

Data Requirements: Number (and type). Identify all incon-
sistencies in the content, quantity, quality, and timeliness of
the system’s data requirements and those specified in the
requirements document or other appropriate sources.

Documentation: Acceptable or Upacceptable. All applicable DoD
software documentation standards were met. Standards that were
failed should be identified by the software tester. If DoD
standards aren't appropriate, the software tester should assess
whether the expert system’s documentation is, in general,
complete and understood or not. Problem areas need to be
identified. This assessment should be separately performed for
(a) the user's manual, (b) the operator’s manual, and (c) the
computer code and its supporting documentation.

Skill Requirements: Yes or No. This may be difficult to
assess. The concern is whether, prior to giving the system to
users, software testers could make an initial assessment of
whether targeted users have the required background skill to
effectively operate the system. After examining the (1)
requirements document and (2) documentation describing the
users’ organizational setting, this may be an easy or difficult
assessment. The binary "Yes/No" measurement scale is a
conservative scale. That is, passing the "Skill Requirements"
attribute should be easy to assess or the system fails. For
example, for one Army expert system, this proved to be a
critical issue. The terminology used in the system was the
terminology of the experts and proved beyond the entry level of
the user actually causing the users to interact with the system
In an incorrect manner. This was partially because the skill
level of the users was based on completion of a certain course
which no longer contained many aspects that were in the course
when the experts took the course.

3-54

PERFORMANCE

. Ground Truth:

- Speed: utes. Consistent with the previous discussions,
software testers should calculate the mean and variance for the
amount of time it takes the (test) users to solve (repre-
sentative) prohlem scenarios working with the expert system.

- Accuracy (d+*): Probability that two points, one taken from the
Positive distribution (i.e., the hypothesis is true) and one
taken from the Negative distribution (i.e., the hypothesis is
false) will be in reverse order. That is, the probability that
the belief value of a point x, from the P distribution is lower
than the value of a point x, from the N distribution:

d% = p(X,<x,]X,€P, Xx,eN).
(See Chapter 5 for details.)
- Bias (B*): 1Is calculated by the following formula:

false alarms # false positives

B* = -
in Sy #in S,

{See Chapter 5 for details.)

USABILITY

. Observable:

- Extent of Use: Proportion of time the system was used for task
accomplishment. Again, propose calculation of the mean and
variance for this distribution.

- Manner of Use: Type and Percentages. The software tester
identifies the different ways in which users employed the
expert system and its features. Then the tester calculates the
percentage of users who used the system in each of the iden-
tified ways.

- Features Used: Percentages. Tester calculates the percentage
of users who used each of the system’s basic features when
solving the problem scenario.

3-55

Judgmental Performance and the Rest of Usability

Two forms of questionnaires are provided for these attributes in the
Appendix. These questionnaires should be used with a sample of test
subjects and the means and variances calculated for assessing performance

on the attribute.

Using the Hierarchy for Testing

As discussed earlier in this chapter, several steps are necessary to
use the hierarchy of attributes: identify what is being tested, establish
importance weights, define measurement scales for the criteria, convert the
scales to a common unit of utility, test the expert system against all
important criteria, and combine the results into an overall assessment. In
this section, we present some additional suggestions for performing these
steps. Volume 5 contains a detailed example of the method implemented with

TESTER_C, the computer program that incorporates the MAU hierarchy.

In many cases, it will be useful to comstruct hypothetical "benchmark
systems,” in addition to the expert system being tested, to use as points

of reference. The tester may want to consider the following "systems":

] the test system, which is the expert system being subjected to
testing;
. a goal system, which is a hypothetical system that fully

attains every goal on every attribute;

* a failing system, which is a hypothetical system that fails on
every attribute;

. a marginal system, which is a hypothetical system that, on
balance, would just manage to pass the test, considering its
performance over all attributes.

Introduction of these hypothetical systems enables a tester to apply
the test criteria on a consistent, comparative basis, and to highlight
areas of deficient and superlative performance of the expert system being
tested. Of the hypothetical systems, the marginal one is usually the most

difficult but most important to describe. Any given system under test is

3-56

likely to have some areas where it falls short of goals and others where it
exceeds goals. 1In addition, some of the goals may be set as ideals that
could not be expected to be met. Ihe warginai system provides a way for
the tester to interpret performance in a way that recognizes these pos-
sibilities, and to specify in advance a minimal level of acceptable overall
performance. This specification in advance removes scme of the subjective-
ness ol the process by setting an overall level of acceptability before
test results are known. Note that the marginal system will not generally
be unique. Many possible combinations of performance against attributes
aay be minimally acceptable. However, when the MAU model is fully speci-
fied, ail of these marginal systems should receive about the same overall
evaluation (i.e., weighted utility). Specification of one of these systems

thus aids in the overall evaluation of the actual system being tested.

To convert measurement scales on attributes—such as those suggested
in the section above—to a common utility scale, we suggest the following 0
to 100 point scale. A convenient, consistent scale could assign a 0 to
performance that is a failure against the attribute, and a 50 to perfor-
mance that meets the parformance goal fully. This choice is arbitrary in
the sense that these levels of performance could be assigned any numbers,
for example, 0 and 100, 0 and 1000, or 27 and 78. However, the points are
not arbitrary in their meaning; 0 is assigned consistently to the failure
level, and 50 is assigned consistently to the level of full satisfaction.
This assignment provides a basis for consistent interpretation of the
analysis and provides the kind of consistency that reduces bias from the
assessments. The scale also allows value to be attached to performance
that exceeds the goal, by scores greater than 50. A score of 100 is used,
for example, in the questionnaires on subjective attributes to represent a

pexformance that grzatly exceeds the goal.

The scales represent ratic juagments of value in the following manner.
A score of 25 is half-way (in value) petween failure and full goal attain-
ment. This provides for convenient and consistent interpretation of
scores., Howewver, it is left to the tester to define the levels of perfor-
mance that represent the goal #nd failure, and these will change from

s{tuation to situation. For example, a 20-minute set-up time may meet the

3-57

goal fully in some cases but may fail in other cases. Another assessment
that the tester must make is whether the performance on any single at-
tribute is so important that the expert system would be regarded as a
complete failure if it failed on that attribute, regardless of its perfor-
mance on all other attributes. In this case, a threshold of performance

should be applied to this attribute.

These utility values represent value on individual attributes only,
and a value on one scale is not generally comparable to a score on another
attribute, except by reference to the goals. The weighting procedure
described earlier in this chapter provides a means for comparing across
attributes. The weighting procedure assigns a relative importance to
criteria and attributes in the hlerarchy. Such assessments are usually
best made by reference to a requirements document or by asking a respon-
sible individual or organization, such as the sponsoring agency, directly.
In some cases, the tester may have to infer this information from available
information. For example, this process may start by asking the sponsoring

agency to assign relative importance to

. Structure and Control of the Knowledge Base;
. Performance of the Inference Engine;

- "Service" Aspects;

. Performance of the Expert System; and

. Usability.

(Remember that the question refers to the importance of the range of
performance between failure and the goal level on all attributes beneath
each category.) The tester might then use his information and understand-
ing of the system to assess the relative importance of sub-categories, for
example the relative importance of structure and content of the knowledge
base. For the more important categorles, it is best to try to extract as
many of the sub-category tradeoffs from the sponsoring agency or the
requirements document as possible. This process is continued until

relative weights are assessed for all attributes.

3-58

Against this structure, the performance of the expert system is
assessed agalnst each attribute using the appropriate subjective, tech-
nical, or empirical methods discusseéu 1. this book. (3inilar assessments
mav be made judgmentally for any hypothetical systems used.) Next, an
overall assessment is determined by the weighted-averaging technique
described in this chapter; that is, assessments of performance on the
attritutes are converted to utilities which are multiplied by the ap-
propriate weights and summed (see Equation [3-1]). This score for rthe
system being tested is then compared with those for the hypothetical
passing and marginal system and checked against any threshold attributes
for an overalil assessment. (Remember also that a score of 50 overall is

interpreted as meeting the goal.)

CHAPTER SUMMARY

This chapter provided a detailed overview of five subjective evalua-
tion methods: multiattribute utility assessment (MAUA), cost-benefit
analysis, the dollar-equivalent technique, decision tree analysis, and a
MAUA-based cost-benefit analysis. All five methods are oriented to testing
and evaluating expert systems. With MAUA, utility functions and a
weighted, additive decision rule are typically used to convert the system's
scores on multiple attributes (or evaluation criteria) into a single,
global measure of effectiveness called an overall utility value. With
cosi-benexic anaiysis and the dellar-equivalent technique, dellars are used
lnstead of utilities to represent the overall worth of the item. Speci-
fically, cost-beneiit analysis uses standard accounting practices, such as
rate of returu and time value of money, to create monetary equivalents; the
dollar-equivalent technique develops the equivalents judgmentally when the
standard practices ars stretched beyond their limit. Decision tree
analysis provides an explicit, formal method for combining uncertainties
sit acilities [or dollac equivaisnis) when evaluating a system. The best
item is the one with tne highe.t expected utility” or "expected value,"
depending on whether one is using utilities or dollar equivalents.

Finally, the MAYJA based cost-benefit analysis uses cost-benefit ratios,
where benefit 1s defined in terms of a utility scale to evaluate items.

Conceptually, it could also be done for dollar equivalents.

3-59

All five subjective evaluation methods are applicable throughout the
expert system development process. The appropriateness of a method depends
on the information and decisiov needs of members of the sponsoring or
development team, available time and resources, and the comfort that par-
ticipants have with the method. Moreover, one should note that "infor-
mation need"” and "comfort” are conceptually independent. For example,
decision makers typically feel more comfortable with “cljective, quantita-
tive" measures of effectiveness (MOEs). However, they also need to
consider more qualitative, subjective MOEs——such as user preferences—when
assessing expert systems. All five subjective evaluation methods are

capable of handling objective and subjective MOEs.

Next, we presented methods for comstructing questionnaires to elicit
opinions. This included basic methods for developing question and response
scales, arranging questions in a questionnaire, assessing the rellability
and validity of a questionnaire, and alternative types of questionnaires.

A generic questionnaire for assessing performance and usability charac-
teristics in a test of an expert system was developed following these

guidelines and is presented iIn the Appendix to the book.

Finally, the last section of the chapter prcposed a particular MAU
framework for testing and evaluating expert systems. It described and
defined a hierarchy of attributes, suggested measurement units for the

attributes, and provided guidance on using the hierarchy in testing.

3-60

CHAPTER 4.

MORE ABOUT TECHNICAL TEST AND EVALUAT1ON METHODS

Technical test and evaluation methods assess how well the system was
built. 1In particular, the focus is on (1) the logical consistency and
adequacy of the knowledge base, (2) the functional completeness and
predictive accuracy of the knowledge base, (3) the adequacy of the in-
ference engine, and (4) the general speed and compatibility of the system's

software and hardware for the organizational setting where it will reside.

Chapter 4 overviews three classes of technical test and evaluation
methods- (a) static and dynamic testing methods for assessing the logical
consistency and completeness of the knowledge base and the adequacy of the
inference engine; (b) methods for using domain experts to assess the
functional completeness and predictive accuracy of the knowiedge base; and
(c) conventional software test and verification methods for assessing the
service requirements of the entire system. The three sections in this
chapter are organized around the first three criteria in the MAU hierarchy
presented in Table 2-1. In particular, the first section deals with
testing and evaluating the expert system’'s knowledge base. The second
section considers the test and evaluation of the inference engine, and the
third section, the expert system's service requirements. Each is now

considered, in turn.

TESTING AND EVALUATING THE KNOWLEDGE BASE

Consistent with the MAU hierarchy in Table 2-1, the knowledge base
sub-branch is divided into two groups of criteria—those focusing on the
adequacy of the knowledge base's structure and those focusing on the
adeguacy ot iis content. Focr strucrure, we consider attributes that
address the logical consistency and logical completeness of the knowledge
base. For content, we consider attributes that address the functional

completeness and predictive accuracy of the knowledge base

In general, there are two classes of technical test and evaluation

methods for assessing knowledge base quality. First, static testing

4-1

methods, and, to a lesscer extent, dynamic testing methods, can be used to
assess the logical consistency and completeness of the knowledge base.
Second, domain experts working with test cases and employing empirical test
and evaluation concepts and methods can be used to assess the functional
completeness and predictive accuracy of the knowledge base. These two
classes of methods are discussed below within the context of assessing the

adequacy of an expert system’s structure and content.

Methods for Evaluating logical Consistency and Completeness

Some authors (e.g., Rushby, 1948) have suggested that techniques for
static testing of conventional software are readily extended to expert
system knowledge bases. In both cases, the focus is on . tecting anomalies
without execution. In expert systems these anomalies relate to the logical
consistency and completeness of a knowledge base. In the last few years, a
number of researchers have developed static testing methods that can be
applied to expert system rule bases (Nguyen et al., 1987; Stachowitz and
Combs, 1987; Franklin et al., 1988; Gilbert, 1989). 1In this section we
will examine three of these techniques, plus Kang and Bahill‘s (1990)
dynamic testing approach embodied in their software called "Validator."

Static Testing for Categorical Expert Systems. A categorical system
is one that reasons qualitatively—it does not consider gradations of
belief. Typical of such systems are rule-based expert systems. As noted
in previous chapters, these systems process through chains of i{if-then rules
to generate conclusions. If one treats if-then rules as logical expres-
sions, then it is possible to check these rule sets for a variety of
logical errors. Examples of such errors (from Adelman and Ulvila, in
press) Include those listed below. More extensive taxonomies can be found

in Kirk and Murray (1988), Nazareth (1989), and Rushby (1988).
. Redundant Rules. Individual rules or groups of rules that
essentially have the same conditions and conclusions.
. Subsumed Rules. When one rule’s (or rule group’s) meaning is

already expressed in another’s that reaches the same corclusice
from similar, but less restrictive, conditions.

4-2

. Circular Rules. Rules that lead one back to an initial (or
intermediate) condition(s) instead of a conclusion.

] Unreferenced Attribute Vaiues. Values on a condition that are
not defined; consequently, their occurrence cannot result in a
conclusion.

. Illegal Attribute Values. Values on a condition that are

outside the acceptable set of values for that condition.

. Unreachable Conclusion (and Dead Ends). Rules that do not
comnnect input conditions with output conclusions.

Static testing for the above anomalies could be performed manually
for small, well-structured knowledge bases. For even moderately sized
knowledge bases, however, this approach is precluded by the amount of
effort required and the probability of disagreements among testers.
Consequently, researchers (e.g., Culbert and Savely, 1988; Franklin et al.,
1988; Nguyen et al., 1987; Stachowitz et al., 1988) have begun developing
automated static testers. Although a number of iifferent technical
approaches are being investigated, Gilbert (1989, p. 2) has noted that many
of the automated static testers "... either implicitly or explicitly
consider an expert system’s rule base to be a graph or network. In the
graph of a rule base, there are nodes that represent rules and nodes that
represent the hypotheses that appear in the rules’ premises and conclu-
sions. There is an arc from a hypothesis to each rule whose premise it
appears in. There is an arc to a hypothesis from each rule that asserts
the hypothesis in its conclusion.” Thus, a graph can represent the
knowledge base’s logical structure (and flow) and, thereby, help detect the

types of logical consistency and completeness errors defined above.

Although a valuable pictorial display, a graphical representation of
even a moderate-size rule base can be difficult to use for error detection.
Consequentliy, researchers have begur using matrices and Boolean algebra to
automate the error detection process. To illustrate this, we use an
example developed by Bellman and Walter (1988) to represent a common source
¢~ror, which is when the same piece of information goes into different
lines of reasorning. Specifically, Figure 4-1 shows the flow graph for a

fragment of a fictitious knowledge base for diabetes diagnosis.

"PATIENT HAS COMPLAINED OF FATIGUE"

]
1 i
1 2 3
AGE SEX WEIGHT
' 1 '
OVERWEIGHT 4 THYROID S upiNe 6 URINE 7
AIDOLE-AGED TESTS SUGAR KETONES
WOMAH HORMAL PRESENT PRESENT
T T 1 T 1]
1 ¥ ¥
BLOCD e PROBABLY Poon 3 {HDICATION OF 10
PRESSURE BEHAVIOR PATTERNS DIABETES
CAUSING OBESITY MELLITUS i
L_l 1___11 ‘ — s '
AESTAICTED W NESTRICT 12 GLucose 13 INSULIN
COFFEE, SALT CALORIES AESTAICTED AND
DIET AND EXENCISE AND EXERCISE DIET AND MONITOR DIET 14

Figure 4-1: The Flow Graph for a Fragment of a Fictitious Rule Base for Diabetes Diagnosis

Figure 4-2 presents an incidence matrix for representing this graphic flow.
The rows in an incidence matrix represent inputs; the columns represent
outputs; and the "ls" represent the connection. For example, the information
obtained for age, sex, and weight (i.e., boxes 1, 2, and 3) only goes into box
4, which, in the example, is that the patient is an overweight, middle-aged

woman. Information from boxes 4, 5, and 6é goes into box 9, and so forth.

inte:4 9 10 11 12 13 214

out of)\

1 -1

2 1

3 1

4 = 1

5 1

6 1 1

7 1

8 1 1

9 * 1 1
10 » 1 1

Figure 4-2: An Incident Matrix Representing the Fiow Graph
for the Fictiticus Diabetes Diagnosis Rule Base

The next step is to translate the incidence matrix into Boolean poly-

nomials. This translation process in this example depends on the truth

table shown in Figure 4-3.

Asserton: 4 S A 9
Rule
R 41
R 42
R 43
R 44
R4S
R 46
R47
R48
Asgerton 5 7
RS}
RE2
RE3
R64

d 4T A4 4T T

44 A~ TmTmT
nA4mMTm A4
4mMmmMmTMmMmm

“aamm
A4m—m
47 m e

Asserson 9 1
R 91
Ra2
R93
R 94

—S 4 mn
< 7 ~ mi°
4 n7n nle

Figure 4-3: A Truth Table Representing a Fragment
of the Fictitious Rule Base for Diabetes Diagnosis

We quote Bellman and Walter (1988, p. 7) to illustrate this process.

We will use "4" to mean "is an overweight, middle-aged woman,"
while 4’ means "is anything else." Similarly, "5" means

"thyrold teusts normal™ while 5° means "thyroid tests abnormal;*
and so on. In that notation,

9 =4 * 5 % 6

where we use * for Boolean product (some other notations use).
Further,

10 = 6 * 7

13 = 9 *x 10.

But we can substitute into the expression for 13:

13 =9 % 10 = (4 *5 % 6') ¥ (6 ¥ 7) =4 %35 (6" ¥6) *7 =~0,

where we show {) around the factors which create the 0
product. The conclusion that 13 = O means that 13 can never be
set to "T." Another way of stating this is that the rules
assigning 13 the value T [True] can never be utilized.

This mathematically induced result can be seen by examining the truth
table shown in Figure 4-3. Rule 94 (R94) asserts that 9 and 10 must be
true for 13 to be true. Rule 48 asserts that 9 ls true if 4 is true, 5 is
true, and 6 is false. However, Rule 64 says that both 6 and 7 must be true
for 10 to be true. Since 6 cannot be true and false at the same time, a

logical flaw in the knowledge base has been discovered.

Approaches similar to the incidence matrix approach can be found in
Sheppard, 1989.

For instance, Nazareth (1989) has shown that if a set of rules

contains a contradiction, then a logical statement of the form

XvXVvZlv ... Vvin

can always be derived using a theorem-proving technique called resolution

refutation. [Note, v, &, -+ means "or," "and,"” and "if..then.." respective-

1ly.}

To {llustrate this approach, begin with the following rule set.
Although not apparent at first look, this rule set contains a contradic-

tion.

R1l A&B-C&D
R2 C&E-+"F
R3 D+ F&TB

R4 E - A.

4-6

To perform resolution refutation, one first translates logical
expressions into clause form, which is simply a list of disjunctive expres-
sions. A clause form database that is logically equivalent to the above

four rules is the following.

Cl "fAvV BvcC
c2 AV Bv D
Cc3 “Cv "EVF
C4 DvF
C5 Dv™B

cé “E v A.

The standard technique for making deductions from a clause database
is resolution. Resolution applied to two clauses of the form X v Y1 v
vV ¥nand "X v Z1 v ... Vv Zn results in the resolvent clause Y1 v ... Vv ¥n v
Z1 Vv ... V Zn. Resolvent clauses are logical deductions that can be added
to the database, from which more clauses can be deduced. Using resolution,

C2 and C5 resolve to generate the clause

“"A v "B Vv "B.

Since "B appears twice, the rule set must contain a conflict. (Specif-
ically, given A & B, Rl will conclude "D from which R3 will conclude 7B.)
In a similar wanner, any possible circular or redundant rules, unreachable
conclusions, or unnecessary if conditions can be discovered using resolu-

tion refutation (see Nazareth, 1988, for a complete discussion).

As these examples illustrate, there are a variety of techniques for
identifying anomalies in a rule base, and simple pairwise comparison of
rules is not always sufficient. Many of these techniques are extendable to
other categorical knowledge representation schemes. For instance, the
logic-based approach can be applied to any knowledge represcentation scheme
where the knowiedge base can be converted into a set of expressions in
symbolic lngic. FExamples of such schemes include frames (Hayes, 1981),

scripts, semarntic nets (Nilsson, 1880, ch. 9), etc.

4-7

Several research tools have been developed to check knowledge bases’
(especially rule bases’) consistency. CHECK (Nguyen et al., 1987) was
developed for testing knowledge bases built for the Lockheed expert system
shell, LES. EVA (Stachowitz and Combs, 1987), the Expert system Validation
Associate, was developed for ART and could be extended for other shells.
The Expert System Planning Environment, ESPE (Franklin et al., 1988), was
developed at Rensselaer Polytechnic Institute for IBM’s Expert System
Development Environment. The Expert System Examiner, ESE (Gilbert, 1989),
was developed by Booz, Allen & Hamilton for ESL (a Lisp-based expert system
language), a pseudo-English, and Nexpert Object. These systems, however,
are research tools that were developed for limited distribution and use.
There are currently no plans to offer these tools as commercial products or
to otherwise make these tools available to testers. Unfortunately, a
tester who wants to automate the static testing of a knowledge base will

probably have to develop his own tool for doing so.

Static Testing for Systems with Reason Maintenance. One approach to
managing uncertainty is to make assumptions, and then to reason from those
assumptions. The capability of reasoning from and retracting assumptions
is variously referred to as truth maintenance, reason maintenance or
assumption-based truth maintenance. We will simply refer to it as assump-

tion-based reasoning.

Assumption-based reasoning is becoming commonplace in expert system
development. Most of the more sophisticated shells now have this capabil-

ity.

Assumption-based reasoning complicates the problem of static testing.
This is because these systems are designed to reason consistently in the
context of contradictory conclusions. Conflicting rules in a normal rule

base may be perfectly consistent in an assumption-based system.

To illustrate, consider the following rule set. Here a, c, d, and f

are propositions, B and E, assumptions.

4-8

R1 a~B
R2 B~c
R3 d » E
R4 E-~ ¢
R5 ¢ =+ "f.

Assume that a and d are entered as facts. Applying these rules, this
rule base quickly concludes ¢ & f—which contradicts R5. However, since
this rule set contains two assumptions, B and E, a contradictory conclusion
does not necessarily imply an inconsistent set of rules. One can always
retract an assumption. In particular, an assumption-based system would
simply deduce that there are two possible states {a,B,c,d,”E,"f} and
{a,”B,”c,d,E,f}.

Static testing of knowledge bases with assumptions, therefore, is a
somewhat different problem than simpler knowledge-based systems. Although
some of the same criteria still apply (e.g., unreferenced attribute
values), others do not. In particular, tests for logical consistency are
very different. Currently, we do not know of any general techniques for

static testing of systems with assumption-based reasoning.

Static Testing for Uncertain Inference Systems. Another approach to
handling uncertainty is to use some type of uncertainty calculus for
quantifying degrees of belief. When an uncertainty calculus is introduced,
however, one quickly discovers that rule sets that would be considered
logically inconsistent Iin a categorical system are perfectly consistent in
a quantitative system. To illustrate this difference, assume that we have
an expert system where the knowledge base corresponds to a set of probabil-

ity statements. Consider the follswing rules:

Rl A&B-~C .7)
R2 C-D (.8)
R3 D+E&F (.65)
R4 A~ "F (.75

R5 A~F (.23)

R6 F- A (.4).

Each of these rules is interpreted as a conditional probability
statement. For example, the rule C+D (.8) simply asserts P(D|C)=-.8.
According to the taxonomy of anomalies presented earlier, this rule set is
full of logical errors. Yet, from the perspective of the probability
calculus, it is completely consistent. Rules R4 and R5, for instance, do
not represent a conflict, but are two equivalent probability statements
(i.e., probability P("F|A) = 1-P(F(A)). Similarly, R1-R4 demonstrate that
transitivity of inference does not hold when quantitative uncertainty is
introduced. Given B, for instance, we kacw that A implies that C is
probable, C implies that D is probable, and D implies that F is probable.
If probability were a logical property, we would also conclude by tran-
sitivity that A implies that F is probable., 1In this rule set, however, we
have the opposite assertion, namely that A implies that F is improbable.
[A verbal example might help. Most college students are unemployed
(P(unemployed|student) > .5). Most unemployed people have less than a high
school education (P(uneducatedunemployed) > .5). If we insist on tran-
sitivity, we would also conclude that most college students have less than

a high schecl education.)

The reason for the difference between categorical and probabilistic
rules is that the probability ~alculus has its own consistency criteria
that have little to do with "logical” consistency. In the case of the
probability calculus, we know that if a rule set satisfies the following

properties,

P{True) = 1
P(CA) = 1 - P(A)
P(A v B) = P(A) + P(B) if A and B are disjoint

P(BJA) ~ P(B & A)/P(A),

then it is consistent with the probability calculus, and no conflict can

exist.

4-10

The same {s true of any principled approach to uncertainty management
(e.g., fuzzy calculus or belief functlons). Each uncertainty calculus

defines its own criteria for consistency-—each somewhat unique.

A Dynamic Testing Approach: Validator. Kang and Bahill (1990) have
developed a tool called Validator that uses test cases to assess the
logical consistency and completeness of the knowledge base. The test cases
can be real or imaginary. They can be developed by domain experts, know-
ledge engineers, users—or, preferably, all three—to increase the proba-
bility that most segments of the knowledge base will be exercised. All
that is required is that the test cases embody, at least on the surface,
valid preconditions. The goal is to record rule firings, not to assess
predictive accuracy. The focus is on identifying which rules never fire

and why.

Kang and Bahill (1990, p. 48) discuss the following two classes of
problems that result in rules not firing: “failure due to false premises”
and "failure due to cutoff." Considering the former, if the premise to a
rule is not <atizfied hy any of the test cases, then the rule will never
fire. This failure can be caused by any of the following three attributes
in our hierarchy: unreferenced attribute values, 1llegal attribute values,
and uireachable conclusions (and dead ends). If a rule has an unnecessary
if condition, it will still fire if the remaining if conditions are neces-

sary and sufficient.

"Failure due to cutoff" implies that the system always stops before a
certain rule is reached; therefore, the rule never fires. This failure can
be caused by the four logical consistency attributes: redundant rules,
subsumed rules, conflicting yules. and circular rules. It can also be
caused if, as in most backward-chaining systems, the system stops after
finding a value with complete certainty. To quote Kang and Bahill (p.48),
"Consider this set of rules [where c¢f is a confidence factor scaled between

0 ard 100%]:

rule-1: if a = yes then ¢ = 1 cf 100%

rule-2: 1f a = no then ¢ = 2 -f 100%

4-11

rule-3: if b = yes then ¢ = 3 cf X.

Rule-3 will never succeed. After the inference engine has found a value
with 100% certainty, it won’t seek further values. (This example presumes
the user is not allowed to answer ‘'unknown’ when a value for g is
queried.)" (This example alsc assumes that the rules are accessed in the

order shown.)

As this example illustrates, none of the four logical consistency
errors is the problem. Instead, the problem is either that: (1) both pre-
conditions for a incorrectly reach a conclusion with 100% certainty and,
therefore, rule-3 is never reached; or (2) b represents an unnecessary if
condition and, more generally, rule-3 an unnecessary rule. Deciding which
of these two possibilities is the cause of the problem is up to the domain
expert and knowledge engineer. Validator’'s task is simply to identify that

rule-3 never fired for any test case.

Validator also identifies rules that fire all the time. As Kang and
Bahill (p. 48) point out, such rules are probably mistakes or are, perhaps,
better represented as facts. "Of course, some control rules always suc-
ceed, and some rules will be designed for rare situations not exercised by
the test cases at hand. Again, this technique is only advisory; the expert

must make the final decision about the rule’s correctness.”

As this last quote illustrates, Validator leaves a lot of the evalua-
tion of the knowledge base in the hands of the domain expert or derivative-
ly to the tester or developer. Moreover, it does not test the knowledge
base (for categorical systems) for the various types of logical consistency
and completeness errors that the static testing methods described above do.
Instead, it records which rules fired for which test cases, and provides
cumulative statistics, most importantly, identifying which rules never
fired. Finally, it is dependent on the test cases used in the assessment.
If the sample of test cases does not exercise the full range of cases for
which the knowledge base was developed, then many of the rules in the
knowledge base will not fire. Therefore, one might argue that Validator

does not provide as rigorous a test of the knowledge base's logical con-

sistency and completeness as do static testing methods., However, as we
mentioned before, automated static testers are not currently available;
Validator is.

Summary. Many expert systems, like conventional programs, are cate-
gorical and do not involve assumption-based reasoning. For such systems,
many of the static testing procedures that are used to evaluate programs
can be adapted to evaluating a knowledge base. On the other hand, expert
systems that manage uncertainty, either by making assumptions or usirg an
uncertainty calculus, are not amenable to the same type of testing.
Different uncertainty calculi require different criteria for comsistency.

Each system must be evaluated according to its own criteria.

As a practical matter, one may argue that there is little to be
gained from developing and applying gener2l software tools for static
testing of knowledge bases—there are tcc many different criteria. On the
other hand, with the growing interest in testing, one would like to find
future development shells that have embedded appropriate static testing
procedures. If available, such tools could be used for automated static
evaluation. If unavailaule, then about all that can currently be done is

some direct manual checking or custom development of specialized tools.

Performing an unaided static analysis of even a small knowledge base
is a tedious task. In fact, we would recommend that two or more testers be
involved in an unaided static analysis of even medium-sized knowledge bases
because the tedious nature of the task without some automated assistance
will no doubt result in errors and omissions. In addition, the use of
sampling procedures would also probably be required to reduce the amount of
work and. in turn, cost. Seen frow this perspective, Validator, even with

its limitations, appears to be a worthwhile tool for helping testers.

Methods for Evaluating Functional Completeness and Predictive Accuracy

By functional completeness we mean to address the range of domain-
oriented questions, such as whether the knowledge base contains all desired

input conditlions and output conclusions, or even "knows" its knowledge

4-13

limitations. Some of these questions can be answered by domain references.
However, the level of domain expertise desired for expert systems is
typically not codified in such references. Indeed, Davis (1989) has argued
that one of the major contributions of expert system technology is that it

has forced the organization and codification of various disciplines.

Consequently, domain experts are usually required to assess the func-
tional completeness of the knowledge base. This is typically done by
having experts perform two activities. First, one has experts examine the
knowledge base (premises, rules, and conclusions) and question the develop-
ers on the various conditions the system can handle or not. Second, one
has experts use test cases—both actual and hypothetical—to exercise the
knowledge base. One should remember, however, that the system's level of
functional completeness depends on its stage of development and, most
importantly, the domain requirements resulting from the requirements
analysis. The DART expert system prototype, for example, considered only
thirteen of forty-two possible activity nodes. This was quite acceptable
in the sponsoring team’s opinion because they conceptually placed a low
relative weight on "functional completeness" at this <tage of DART's

development,

The predictive accuracy of the knowledge base pertains to the cor-
rectness by which the facts and rules (or whatever representation scheme)
relates the conditions in the test cases to the system’s conclusions. Such
an assessment is essential for expert systems; otherwise, “garbage in" is
literally "garbage out.” In particular, we have identified the following
five attributes in Table 2-1 that address the predictive accuracy of the

expert system’s knowledge base:

1. Accuracy of Facts: the quality of the unconditional statements
in the knowledge base;

2. Accuracy of Rules (or whatever representation scheme): the
quality of the conditional statements in the knowledge base
reoresenting expert judgment;

3. Knowledge Representation Acceptability: whether or not the
scheme for representing knowledge is acceptable to other domain
experts and knowledge engineers;

4, Adequacy of Source: quality of the person(s) and/or documenta-
tion used to create the knowledge base;

5. Modifiability of the Knowledge Base: extent to which there is
control over changes to the knowledge base, and whether these
are implemented by (selected) humans and/or the machine itself
(through learning).

Conceptually, knowledge engineering is a measurement problem. For most
of the problem domains for which we develop expert systems, we do not have
objective, quantitative knowledge (e.g., in the form of ground truth) that
we can, so to speak, take off the shelf and put into a system to solve a
problem. Instead, we have to rely on experts to tell us, on the basis of
their learned knowledge and experience, what information and relationships
between this information are important in so'ving a problem (or performing

a task) in the domain for which we are building the expert system.

It is not uncommon for experts to not only disagree in their conclu-
sions, but in how they reached them. Moreover, there is considerable
research (e.g., see Ebert and Kruse, 1978; Hoffman et al., 1968; Libby and
Lewis, 1977) demonstrating that, under controlled settings, the predictive
accuracy of different experts varies considerably. Indeed, the commonplace
phrase, "Get & second opinion,” heard Iin many professional problem domains
for which expert systems are under development, such as medicine, is not
only indicative of this fact, but an illustration of the larger measurement
problem. For if one wants to increase the probablility that one has un-
cavered some truth and not just the random or systematic error attributable
to the measurement instrument (e.g., domain expert), one should apply the
me-.urement principle of sampling over sources of variability (e.g., see
Adelman, 1989; Hammond, 1948).

The measuremeut probiem is wald more complicated in knowledge en-
gineering efforts because there are four additional sources of variability
of the knowledge base: knowledge engineers, knowledge representation
ol rmes, knowledge elicitation methods, and the problem domzin itself. The
knowledge bases for many expert systems are, however, developed for a
problem domain using only one domain expert, one knowledge engineer, and

one elicitation method for a predetermined knowledge representation scheme

a4-15

{or shell). The predictive accuracy of expert systems has to be tested for
there is minimal (if any) research demonstrating that the above sources of
variability do not significantly affect the quality of the knowledge base,
and research in areas related to knowledge engineering that suggest they
do.

For example, there is a long line of psychological research in the
field of interviewing, which is analogous in many respects to knowledge
engineering, that has demonstrated significant interviewer effects (e.g.,
see Forsythe and Buchanan, 1989). Research by Hammond et al. (1986; 1987)
with 20 highway engineers using three knowledge elicitation methods to make
aesthetics, safety, and capacity judgments found significant differences in
predictive accuracy for experts, methods, problems and, most importantly,
method-by-problem interactions. Research by Kahneman and Tversky (1984)
clearly demonstrates that the way a problem is “framed” significantly
affects people’'s decision making process. Research by Dawes and Corrigan
(1974) and Hammond et al. (1975) has demonstrated that the inherent pre-
dictability of problem domains varies significantly. And, although they
failed to vary knowledge engineers, the analysis of structured interviews
obtained in a knowledge engineering context by Leddo and Cohen (1987)
suggests that the amount and type of knowledge varies depending on the
expert, task, knowledge representation scheme, and elicitation method;
moreover, they suggest that Interactions may exist among all of these

sources of variation.

Given the many different threats to the predictive accuracy of the
knowledge base, muitiple experts and empirical evaluation methods should be
used to evaluate the expert system’s predictive accuracy. Experts, both
those who participated in development and those acting as independent
evaluators, are typically used to evaluate the predictive accuracy and,
thus, the adequacy of the knowledge base. Expert evaluation typically
proceeds in two ways: through examination of the knowledge base and the

evaluation of test cases.

Examining the Knowledge Base. Expert examination of the knowledge

base typically focuses on whether the system exhibits "correct reasoning.”

4-16

The obvious concern is, of course, that the knowledge base not have mis-
takes. However, another concern—and one which Gaschnig =t al. (1983)
pointecd out is not shared by all developers—is whether their expert
systems reach decisions like human experts do. Many psychologists have
long argued that this concern cannot be answered for one cannot, so to
speak, look Inside an expert’s head to obtain the "correct reasoning."
Instead, all one can do is build "paramorphic models” (Hoffwan, 1960) of
the reasoning process and evaluate their predictive accuracy against test
cases. Indeed, researchers (e.g., Dawes and Corrigan 1974; Einhorn and
Hogarth, 1975 ; Levi, 1989; Stewart et al., 1988) have shown that simple
linear models can often result In prediction as good as those achieved by

experts or the far more complex models found in expert systems.

As Lehner and Adelman (in press) point out in their review of the
literature, this is not a resolved issue. On the one hand, Gaschnig et al.
{p. 255) point out, ".., there is an increasing realization that expert-
level performance may require heightened attention to the mechanisms by
which human experts actually solve the problems for which the expert
systems are typically built." 1In addition, Adelman, Rook, and Lehner
(1985) found that domain experts’ judgments of the utility of decision
support system and expert system prototypes were significantly affected by
the match between how they and the system attempted to solve the problem.
On the other hand, the intended users of many expert systems are novices,
not experts. Research by Lehner and Zirk (1987) indicates that novices can
perform extremely well with expert systems as long as they have a good
mental model of how the expert system is using the data to arrive at its
conclusions. What all of this suggests is that, at a minimum, the system's
representation and presentation schemes need to be reviewed by experts and

discussed with intended users.

Using Test Cases. We strongly advocate the use of test cases and
performance standards to assess the predictive accuracy of the knowledge
ware, That is, we recommend an empirical test and evaluation of the
knowledge base. We distinguish here between the empirical test and evalua-
tion of the knowledge base and that of the entire expert system. Remember,

the expert system may be addressing only part of a much larger organiza-

417

tional decision. Even if the technical test and evaluation of the know-
ledge base shows that it has good predictive accuracy, the expert system's
contribution still may not ensure better organizational performance.
Moreover, the potential users of expert system technology may not be
experts in the substantive domain. In these cases, one needs both experts
and users to participate in the evaluation. The experts are needed for the
technical test and evaluation of the knowledge base; the users for the
empirical test and evaluation of system performance. If possible and
appropriate, experts should also participate in the empirical evaluation in
order to systematically assess whether system performance is a function of

user type.

There are two standards for empirically assessing the adequacy of an
expert system’'s knowledge base. The first standard is ground truth; that
is, comparing the system’s predictions to the correct answers for the test
cases. The second standard is expert judgment; that is, comparing the
system’'s predictions to those of domain experts who have and have not
participated in development. Ideally, one would like to be able to use
both standards. Correct answers are desirable because substantial research
(referenced above) has shown that experts do not always make perfect
inferences and, in fact, often disagree with one another in the kinds of
complex domains for which many expert systems are developed. Expert
judgments are desirable because it is often inappropriate to expect better
predictive accuracy from the system than from the expert. It is important
to note, however, that this may not be the case where the system incor-
porates knowledge from a limited, well defined domain—such as a procedure
manual—or where the system represents the expertise of several experts or
is supporting a life and mission-critical mission. Under such conditions,
it may be quite appropriate to expect the expert system to make more

accurate predictions than any given expert.

When using test cases, we want to be able to perform statistical
tests to assess the adequacy of the expert system’s predictive accuracy.
That is, we want to perform a t-test or binomial test or other appropriate
statistical test—different tests will be considered in Chapters 5 and

6 —to assess whether, on the average, (1) the expert system’s predictions

4-18

are significantly different from the correct answers for the test cases, or
(2) different from some predetermined performance level. Ideally, what
we'd like to see is that, on the average, the system's knowledge base
predicts the correct answer; that is, that there 1s no stacistical basis
for concluding that the expert system will not, on the average, predict the
correct answer. This goal may, of course, be too ambitious for the expert
system. As O’Keefe and O'Leary (1990) point out, the system may be ac-
ceptable i{f it performs at a predetermined level, such as being correct 90%
or 95% of the time, or 1s as accurate as a graduate student if not an
expert, or whatever the predetermined "acceptable performance range" is.
[From a user and organizational perspective, we want performance to be as

good, and preferably better, with than without the expert system.]

Ideally, we want to be able to conclude either that (a) the system's
knowledge base is adequate (according to the predefined "acceptable perfor-
mance range") when it is adequate, or (b) that it is inadequate when it is
inadequate. It is important to note here that statistical tests are based
on the probability calculus and, therefore, their conclusions are poten-
tially fallible. In particular, there are two types of potential errors.
The first type of error is called a Type I error. In the context of
assessing the adequacy of the expert system’s predictive accuracy, it is
concluding that the knowledge base is not adequate when, in fact, it is.
0'Keefe et al. (1987) refer to this as the "builder's risk." The second
type of arror, Type Il error, would be concluding that the system's predic-
vive accuracy is adequate when in fact it is not. O0’'Keefe et al. refer to
this as the "user’s risk.” (These types of errors and, more generally,

statistical testing will be considered in Chapters 5 and 6.]

More generally. 1f ground truth measures exist, one should try to
discriminate between "accuracy" and "hias" in a signal detection cense
(Lehnar, 1989; lLehner and Ulvila, 1989). Accuracy refers to the degree of
overlap in the distributions of belief values when the hypothesis is true
vercus false. Blas refers to the proportion of false negatives (hypothesis
true, but user or system says false) to false positives (hypothesis false,
but user or system says true). The two different types of bias are concep-

tually identical to Type 1 and II errors. This more general approach not

%-19

only considers "builder’'s risk" and "user’'s risk," but the expert system's
ability to discriminate among alternative hypotheses. Moreover, it has
considerable implications for helping the test and evaluation team decide
on the number of test cases to use to evaluate the knowledge base’s predic-

tive accuracy (we elaborate on this in Chapter 5).

The level of bias to be accepted in an expert system is a critical
decision for intended users and their sponsoring organizations. As the
evaluation of DART (discussed in Chapter 2) demonstrated, different types
of inferential errors differ in their implications, and thus importance, to
decision makers. It is the evaluator’s job to make sure that intended
users and sponsors know the amount and proportion of different types of
inferential errors to which the knowledge base is susceptible throughout
development. For these reasons, Chapter 5 discusses the more general

approach in detail.

If the correct answers do not exist or, for whatever reason, are
inappropriate for the test cases, then one must rely on the judgment of an
expert or the consensus judgments of a group of experts. Considerable care
must be given to structuring the experts' activities. In particular, as
with the DART test and evaluation, the evaluation team must ensure that the
experts are "blind" as to whether the system or other experts generated the
conclusions to the test cases. This is typically referred to as a "Turing
test" (e.g, see Rushby, 1988; Yu et al., 1979).

In closing this section, it is jimportant to note that test case con-
struction is an important issue. To quote O'Keefe et al. (1987, p. 83),
"The issue is not the number of test cases, it is the coverage of test
cases—that 1s, how well they reflect the input domain. The input domain
is the population of permissible input..." (italics theirs]. The required
coverage capabllities is clearly a statement that needs to be a result of
the requirements analysis. For as 0O'Keefe et al. point out, developers
frequently devote a disproportionate amount of time to attempting to ensure
that the system can handle the truly "expert" cases that may occur very

infrequently. Moreover, these "infrequent” cases often become the test
q y q

4-20

cases. This may or may not be appropriate depending on the requirements

for the system, and it can certainly be expensive.

An alternative identified by O'Keefe et al. is to randomly select
test cases using a stratified sampling scheme such that the relative
frequency of the cases {s representative of those in the cperational
environment or stipulated in the requirements. Additionally, test cases
should be chosen to cover situations where a failure in the system would be
especially serious. It is also important that some of the test cases
simulate the most common operation of the system. As Chapter 5 will show,
a surprising smell number of rest cases are required to assess whether an
expert system’s level of predictive accuracy is sufficiently good to be of

practical value to its users.

Summary. This section of Chapter 4 considered methods for evaluating
the functional completeness and predictive accuracy of the knowledge base.
Functional completeness is typically assessed by having experts (1) examine
the knowledge base and question the developers on the various conditions
the system can handle or not, and (2) use test cases to exercise the
knowledge base. Predictive accuracy is assessed using test cases and
comparing the expert system’'s performance against two standards: ground
truth and expert judgment. Statistical tests are used to help decide
whether the system’s predictive accuracy is acceptable or not. In this
regard, we discussed "builder’s risk" and "user’s risk," and the more
genaral probler of aggassing the tvpes of errore (or bias) to which the
system is most susceptible. These issues will be considered in substantial
detail in Chapter 5. Finally, we addressed the issue of test case con-

struction in closing this section.

INFERENCE ENGINE

The inference engine is the portion of the expert system that con-
Le.ns the general problem-solving knowledge. This includes an interpreter
that decides hiow to apply rules to data and infer conclusions (or the
analogous operations with other knowledge representations) and a schedule

that controls the order in which the rules are applied. 1In many expert

h-21

systems, the inference engine is embedded in the development environment,
tool, or shell. However, the vendors of such products provide little or no
information on whether and how their inference engines were tested or

validated.

As a practical matter, it is difficult to test an inference engine,
and most testers do not even try. For noncritical applications of widely
used and established environments, tools, or shells, this practice should
not cause a serious problem. The widespread use of the tool will probably
turn up 7 st of the problems with the inference engine, and the noncritical
nature of the application limits the seriousness of possible problems.
Furthermore, other tests (e.g., those aimed at discovering the correctness
of reasoning or £ conclusions) can find some of the problems that could be

caused by a faulty inference eungine.

The development of benchmarks would aid in the testing of inference
engines. A benchmark is a standard module of coded knowledge with known,
proven-correct results that can be coded on a variety of inference engines.
The correct performance of the inference engine on a comprehensive set of
benchmarks provides strong evidence that the inference engine is correct.

Unfortunately, cuch a set of benchmarks has not yet been developed.

Another —-~riach to testing Inference engines is to code identical
knowledge bases with different inference-engine products (e.g., shells) and
exercise these programs in parallel. If the behavior of all of the systems
is the same, this gives some evidence that the inference engines are free
of problems. However, this evidence is not absolutely conclusive. Fur-
thermore, different results indicate problems in one or more inference
engines, but may not indicate which particular inference engine is faulty.
This procedure is also expensive, and the expense will be hard to justify

for any but the most critical expert systems.

SERVICE REQUIREMENTS

in addiiion to zvaluating the expert system's knowledge base and

inference engine, traditional software test and verification methods can be

4-22

used to help assess what Rushby (1988, p. 75) has called the expert sys-
tem’s "service" versus "competency” requirements. These methods have
considerable applicability (a) prior to programming code for verifying
requirements analysis documentation and functional models of the scftware,
and (b) once the development process is well underway, during hardware

configuration, system packaging, and system transfer.

Verification testing should be systematically performed for the
service requirements of expert systems, just like any other software
product. Fagan and Miller (as reported in DeMillo et al., 1987) have
identified four phases for software testing. The first phase is manual
analysis in which the requirements specification, the design and implemen-
tation plan, and the program itself are analyzed for problems by experi-
enced software engineers. The second phase is static analysis, which may
be manual or automated, in which requirements and design documents and
software are analyzed, but without code execution. The third phase is
dynamic analysis in which software is executed with a set of test data.
And the fourth phase, which Fagan and Miller consider to be optional, is
attempting to prove the program as being correct. {[This last phase assumes
a stable program, not a prototype, and is typically reserved for critical

modules.]

According to classification found in DeMillo et al. (1987), most
testing technigues seem to focus on static or dynamic analysis; that is,
the second and ~hird phases in Fagar ard Miller’s taxonomy. Moreover, the
first and fourth phases can be subsumed by the static and dynamic phases,
respectively, to simplify the presentation. This will make the focus on
testing "service” requirements comparable to the focus on using static and
dynamic testirg metbods te test characteristics of the knowledge base
considered eariier in this chapgtevr <onsequently, software testing methods

will be overviewed under these two category headings below.

DeMillo et al. (1987) lisr five static analysis methods. The first
four methods are manual; the last one is automated. The manual static
analysis methods are (1) requirements analyses, (2) design analyses, (3)

code irspections and (4) walkthroughs. Requirements analyses typlcally use

-~
gv]
i

a checklist of evaluation cr.teria, such as the consistency among the
different requirements specifications of the system, their necessity in
achieving system geals, and their implementation feasibility with existing
resources. Design analyses also use a checklist, which may actually be
quite similar to that used in the requirements analysis, but now the focus
is on elements of the software system design, such as the data flow dia-
grams, module interfaces, algorithms, etc. Code inspections and walk-
throughs involve the static analysis of the program by a group of people
but, according to DeMillo et al., the former uses a checklist of common
programming errors as a reference point and the latter uses a set of test
cases for assessing the logic of the program. In addition, as Fairley
(1985) points out, inspections differ from walkthroughs in that a team of

trained inspectors analyze the work products in the former.

Static analyzers, which is what the term "static analysis" typically
connotes, are automated tools that analyze the source code for loglc
errors, structural errors, syntactic errors, coding style, interface
consisternicy, etc. without using test cases to execute the code. As with
automated static analysis of the knowledge base, traditional software
static analyzers are valuable but they do suffer from both practical and

theoretical limitations.

In dynamic testing, test data (called cases) are constructed and used
to execute the software in an effort to uncover programming errors.
Fairley (1985) identifies four types of tests: (1) functional tests, (2)
performance tests, (3) stress tests, and (4) structural tests. Functional
tests are designed to evaluate the adequacy of the software in performing
the functions identified in the requirements specifications. Test data are
selected by specifying typical operating conditions and input values, and
examining whether or not they result in the expected outcomes. Performance
tests are also tied to the requirements (and design) specifications, but
now the focus is on, for example, verifying the response time under various
loads, determining the amount of execution time spent in various parts of
the program, and examining program throughput. Stress tests are, as the
name suggests, designed to overload and, in many cases, break the syster in

an effort to assess its strengths and limitations. Finally, structural

4-24

tests are designed to exercise the logic of the program by traversing
various execution paths. These types of dynamic tests are just as ap-
propriate for assessing the quality of the system's "competency,” as its

"service" requirements.

There are a number of different dynamic testing methods. Three
methods are introduced here; discussion of these and other methods can be
found in numerous texts, including DeMillo et al. (1987), Fairley (1985),
Pressman (1982), and Rushby (1988). The three methods are (1) random
testing, (2) input space partitioning, and (3) symbolic testing. Random
testing is a strategy in which a program is tested by randomly selecting a
subset of all possible input values. The distribution of input values can
be either arbitrary or attempt to reflect the distribution actually found
(or expected) in the application environment. In input space partitioning,
test data are selected for evaluating the different subsets of the prog am
input domain, such that each partition causes the executlion of a different
program control path. The concept is that the input space is partitioned
(or divided) into groups such that the inputs within each group are in some
sense equivalent and, therefore, likely to result in similar behavior.
Again, both random testing and i{nput space partitioning methods can also be

used to test the knowledge base.

In contrast to random testing, input space partitioning, and most
testing methods, svmbolic testing uses symbelic inputs (e.g.. symbolic
constants) and outputs (e.g., symbhnlic formulae and symbolic predicates) to
evaluate program accuracy. The underlying assumption of symbolic testing
is that a program can be conceived of as a finite set of assertion-to-
assertion paths that can be represented symbolically by an execution tree
consisting of nondes associated with the statements being executed and
directed arcs indicating pregram £l~w. The objective is to demonstrate
symbolically that each assertion path 1s accurate and, in turn, that the
program is correct. In this regsrd, symbolic testing is comparable to the

theorem-proving methods considered above for testing the krowledge base.

Software verification testing methods are essential if the expert

system is embedded in other software, for having a high-quality expert

425

system embedded in low-quality, deficient software will be of little value
to the user. However, in many cases, the expert system will not be em-
bedded in other software, but will have to be compatible with the computer
system in the user'’s operational environment. As Cholawsky (1988, p. 44)
points out, "In general, prototypes ignore both deployment issues (such as
cost-benefit analysis, scaling up to operational size, and handling real-
world data) and transition issues. Important problems, such as linking to
standard databases and porting to standard user hardware, may not be

investigated by the prototype."”

“"Deployment” and "transition" issues are important ones for testers
to consider. In an effort to assist them, we have identified a host of
such issues and listed them as attributes under the "service requirements"
branch of the MAU hierarchy in Table 2-1. 1In pérticular, these attributes
are classified into three groups: those dealing with (1) the computer
system, (2) computer usage, and (3) system integration. The individual

attributes in these three groups are defined, in turn.

] Computer System:

- Design. The extent to which the expert system runs on
the approved computer hardware and operating system and
utilizes the preferred complement of equipment and
features. In some cases, the original system require-
ments may specify or describe the preferred or required
system, In other cases, the tester may need to survey
available equipment at the intended installation.

- Portability. How easily the expert system can be trans-
ferred to other computer systems.

. Computer Usage:

- Set-Up Time. The amount of time required for the com-
puter operator to locate and load the program (if any)
and the time to activate the program. Set-up time should
be measured in the expected operating environment (i.e.,
how the program will actually be implemented.)

- Run Time. The amount of time required to run the program
with a realistic set of input data. This factor refers
only to the time that the computer program takes to run;
the time needed for the programmer and user is included
under dynamic testing factors.

4-26

Space Requirements. The amount of RAM and disk space
required by the program.

Reliability (Hardware). Percentage of time the computer
system could be expected to be operating effectively.

Capability (Hardware). The computer system's total
amount of RAM and disk space.

Effect of Feature Use/Jumping. The extent to which
moving from various parts of the program causes errors.

Degradation. How well the program (a) saves data and
analyses, and (b) permits continuation after an unex-
pected program or system crash or power outage.

Handling Input Errors. The extent to which the program
(a) prohibits a program crash, and (b) tells the user
what to do after an input mistake.

System Integration:

Formats. The extent to which the program uses input and
output formats that are consistent with the intended use.
This includes any mandated or standard formats that are
specific to the Intended user organization.

Data Requirements. The extent to which the program’s
data requirements are consistent in content, quancity,
quality, and timeliness with those available to the
intended user organization. The program should also be
able to interact with specified and appropriate databases
and communications systems.

Documentation. The adequacy of material regarding the
grogran’z use and maintenance. User's manuals should be
complete and understandable. Copies of computer code and
its supporting documentation should be complete and
understandable, and should allow maintenance by the
government. (All applicable DoD software documentation
standards should be met.)

Skill Requirements. The extent to which the program can
be operated by appropriately skilled individuals. The
appropriate skill requirement Includes grade level (for
military enlisted, milicary officer, or civilian person-
nel), users' technical background, and training require-
ments. The appropriate level may be specified in re-
quirements or may be determined by reference to the or-
ganizational setting of its intended use and to the
personnel assigned to that setting.

This section of the chapter has overviewed traditional saoftware test
and verification methods for assessing the adequacy of the expert system’s
"service requirements.” In particular, we have overviewed five traditional
static testing methods and four dynamic testing methods. These methods are
most applicable when the expert system is embedded in a larger software
system. When it is not embedded in a larger system, we have defined a
number of attributes for assessing the expert system’s compatibiliry with

the computer system in the user’s operational environment,

CHAPTER SUMMARY

Chapter 4 addressed technical test and evaluation methods for assess-
ing how well the expert system is built. Its three sections were organized
around the first three criteria in the MAU hierarchy in Table 2-1. 1In
particular, the first section dealt with testing and evaluating the expert
system’s knowledge base. The second section dealt with testing and evalu-
ating the inference engine, and the third section, the expert system’s
service requirements. Tiree classes of technical test and evaluation
methods were considered: (a) static and dynamic testing methods for
assessing the logical consistency and completeness of the knowledge base
and the adequacy of the inference engine; (b) methods for using domain
experts to assess the functional completeness and predictive accuracy of
the knowledge base; and (c¢) conventional software test and verification

methods for assessing the service requirements of the entire system.

4-28

CHAPTER 5:

MORE ON ASSESSING THE PREDICTIVE ACCURACY
OF AN EXPERT SYSTEM'S KNOWLEDGE BASE

Because of its importance, Chapter 5 extends the discussion in
Chapter 4 on approaches to testing and evaluating the predictive accuracy
of the expert system’'s knowledge base. For simplicity, we use the terms
"performance of the expert system” or "performance evaluation” to refer to
"assessing the predictive accuracy of the expert system's knowledge base. ™
The reader should not confuse the discussion in this chapter with the
discussion in the next, which is oriented to assessing the overall perfor-
mance of the person and organization using the expert system. However.

both chapters emphasize the use of empirical concepts and methods.

The approach one takes to performance evaluation depends on the
objectives for which the expert system was developed. If the objective of
the system is to capture and encode human expert problem solving, then
performance should be evaluated vis. a vis. similarity to expert judgment.
Alternatively, if the system objective is to maximize accuracy, then
performance evaluation must estimate the extent to which the systen

generates correct or accurate outputs.

Below we consider several possible evaluation procedures, each
corresponding to a different development objective. [This chapter contains
highly technical material on a small portion of the hierarchy—performance
against ground truth. This chapter is not essential to the understanding

of the other chapters.]

CASE 1: HYPOTHES!S TESTING WITH BFELIEF VALUES

Tre first case we will consider is presented in more detail (and
conceptually may be more difficult) rhan some of the cases presented below.
However, most of the concepts we use in the later cases cuan be conveniently

introduced here.

Consider the case of an expert system that outputs quantitative
belief values for alternative hypotheses. The objective of the system is
to assess the relative likelihood (plausibility, helief, etc.) of each of a

set of hypotheses As we saw in earlier chapters. many systems fall into

this category.

Possible Performance Measures

As discussed in Lehner (1989) and Lehner aad Ulvila {in press), an
expert system that evaluates predefined hypotheses is loosely analogous to
a signal detector. A signal detector is any system that functions to
discriminate occurrences from nonoccurrences of a signal. As shown in
Figure 5-1, the signal detection problem is often characterized as one of
receiving a set of sample values (perceived signal strength) from one of
two distributions (signal exists vs. signal does not exist), and on the
basis of this information, deciding from which of the two distributions the
signals were drawn. Usually this decision is based on whether the observed
signal strengths exceed a threshold. The decision threshold is determined
from background knowledge of the underlying distributions. The sensitivity
of a signal detector is often measured in terms of the normalized dif-
ference between the means of the two distributions (d'). 1If d4' is large

(small), then the error rate of signal/no signal decisions will be small

(large).
, Hy.Ho
d'= -
Signal Signal
Nat Present Present
\
\
Perceived

Signai Strength

Figure 5-1: Hypothetical Distribution of Perceived Signul Strength
in Signal Detection Theory

$-2

In an expert system inference network (or other knowledge structure),
each node represents two or more mutually exclusive hypotheses. Many
expert systems generate a belief value (probability, certainty level,
Shaferian bellef, etc.) for each hypothesis. Consider a node that dis-
criminates two hypotheses, H; and H,. When H, is true, we would generally
expect the belief value in H,, bel(H;), to be higher than when H, is true.
The user’'s problem is to use the belief values output by the expert system,
along with other available information, to select a hypothesis and act
accordingly. If there is a large (small) difference between the mean
bel(H,;) value when H, vs. H, is true, then the expert system should be

useful (useless) in helping a user to discriminate these two hypotheses.

From a user perspective, an expert system is useful if it helps the
user discriminate instances when different hypotheses are true. One
approach to evaluating a system is to ertimate the proportion of times the
expert system will generate advice that {s useful in discriminating among
alternative hypotheses. In this sectifon we show how this can be done. In
this section and the next section (Cases 1 and 2), we will make several

assumptions. Each assumption will be discussed or relaxed in Case 3.

Assume an expert system that distinguisnes between just two hy-
potheses, H and ~H. Assume also that the expert system generates belief
values that satisfy bel(H) = 1-bel(~H). (Call these assumptions Al and AZ,
respectively.) Consider Figure 5-2, which contains two distributions [or
densities], P(bel(H)|H) and P(bel(H)]~-H). Two thresholds have been set, U
and L. Depending on how a user utilizes an expert system, Figure 5-2 has

at least two different interpretations.

N

PhelH)HY) ~a——— P(bel(H1)]H1)

L U bei(H1)

Figure 5.2: Distributions of Belief Value, bel(I1) for I11-true vs. H2-false

5-3

First, the expert system may be utilized to partially automate the
inference process. That is, if the expert system outputs very high (low)
belief values, then the user simply acts under the assumption that H (~H)
is true. 1In this context, U and L can be interpreted as decision thresh-
olds. 1If bel(H) is greater (less) than U (L), then the user concludes H
(~H). Otherwise the user is uncertain, and proceeds to collect additional

evidence. Of course, complete automation occurs when U - L.

Alternatively, the user may view the expert system as a source of
evidence, That 1s, the user combines the expert system’s output with other
data and knowledge to make his or her own inferences. In this context, an
important question to ask is “"How often does the expert system output
strong evidence for the correct conclusion?” One standard approach to
measuring the strength or diagnosticity of an item of evidence is by a
likelihood ratio:

P(bel(H) |H)
~ P(bel(H)|-H)

If IR is high (e.g., greater than 10), then the report "bel(H)" is strong
evidence for H vs. ~H. 1If LR is low (e.g., less than .1l), then the report

"bel(H)" 1s strong evidence for -H.

The reason that LR i{s a standard measure of evidential value 1is that
most theories of rational induction (i.e., proper degrees of belief)
recommend the use of Bayes’ Rule for updating (see Mortimer, 1988). This
rule states that a person’s relative degree of belief in H vs. ~H, given a

new piece of eviderce, E, should be determined by

P(H|E) PE(H) B(H)
P(~H|E) ~ P(E|~H) = P(~H)

Posterior Odds = LR * Prior Odds.
U and L {n Figure 5-2 can be interpreted as thresholds of strong

evidence. That i{s, if bel(H) is greater (less) than U (L), then the exper:

system has output strong evidence for {(against) H. If bel(H) {s between U

5-4

and L, then that output does not provide strong evidence in either direc-
tion; that is, the user will need to base his or her decision on other

factors or be driven by priors.

Consequently, whether the user chooses to utilize the expert system
to partially automate inference decisions or as a source of evic:nce,
Figure 5-2 provides a way of characterizing user/expert system interac-

tions.

Consider P(bel(H)|~-H), the distribution of belief values when H is
false. Given U and L, we can specify three probabilicies:

P(bel(H)<L|~H)

t

probability of true negative

t

P(U>bel{H)>L|~H) probability of uncertain output

P(bel(H)>U|~H)

t

probability of false positive.

Similarly,

P(bel(H)<L|H)

+

probability of false negative

t

P(U>bel(H)>L|H) probability of uncertain output

P(bel (H)>U|H)

+

probability of true positive.

Define P; to be the probability that the expert system will generate
beliaf values rthat <irengly support the wrong conclusion and Py to be the
probability that the expert system will generate belief values that do not
provide strong support for either conclusion. From the above six probabil-
ities, we know that

Pp = P(bel(FHy<L{H)*P(H) + P(bel(H)>U|~H)*(1-P(H)) [5-1)

and

Py = P(U>bel(H)>L|H)*P(H) + P(U>bel(H)>L|-H)*(1-P(H)) (5-2]

5-5

where P(H) is the probability (anticipated relative frequency) of sampling
from the H-true distribution.

Together, Py and Py are two aggregate measures of the usefulness of
in expert system. If P is relatively high, say .1, then the expert system
is generating outputs that strongly support the wrong conclusion about 10%
of the time. If Py is relatively high, say .3, then the expert system is
generating useless outputs approximately 30% of the time. From these two
numbers, we know that 1-Py-Py is a measure of the proportion of times the

expert system will strongly support the correct conclusion.

Estimating Pr and Py

One of the objectives of evaluating an expert system is to assess the
extent to which that expert system can help a user to make correct inferen-
ces. Although different users will set different U and L thresholds, one
can still ask whether it is possible to set thresholds where Py and Py are
simultaneously low. If this cannot be done, then the expert system cannot
be very useful {n as much as the user wust elther tolerate a high error

rate or a high rate of outputs in the uncertain region.

To estimate the extent to which P; and Py can be simultaneously low,

it is useful to make several simplifying assumptions. They are as follows.
A3) Given each hypcthesis, the distributions of belief values are
normally distributed.
A4) The distributions of belief values have equal variance.

AS) The U and L thresholds are symmetric. This means that

(bel(H)>U|~H) = P(bel(H)<LjH).

Since the thresholds are symmetric and the two normal distributions
have equal variance, it follows that Py and P; are now independent of the
reiative frequency of sampling from each distribution. Or equivalently 7
and P, are not affected by the prior probability P(H). Specifically, we

get

5-6

Py ~ P(bel(H)>U|{~H) = P(bel(H)<L|H),

and

Py = P(U>bel(H)>Lj~H) = P(U>bel(H)>L|H).

In addition, from these assumptions it follows that

(M;-My) /s = z(1-Pg) + z(1-Pg-By), (5-3]

where M,, M,;, and s are the means and standard deviation of the two dis-
tributions, and z(X) is the z-score for X. From this it can be seen that
any procedure for estimating the means and standard deviation of the two

distributions will also provide an estimate of Py and Py.

Consequently, one can specify a straightforward test procedure for
evaluating an expert system that discriminates H and ~H. First, identify
two representative sources (H-true vs. H-false) of possible test problems.
Randomly select problems from each source. Run the expert system against
each problem and do a t-test comparison of the results. The t-test
analysis will output an estimate of the mean and standard deviation of each
distribution, an estimate of the difference between the means of the two
distributions, and a standard error of the estimate for this difference.
From these three estimates, Py and Py can be estimated in turn using
Equation [5-3]. An example of this will be given shortly.

Us Py and P, to Determine Sample Size

Although the above procedure is straightforward, we still need to
determine the number of test problems required. As it turns out, the Pg
and P; measures can be helpful in making this determination. A standard
result from classical statistics (see Hays, 1972, p. 417-422) will be

useful here. Namely,

2{z(1-a) - z(B)]*
(M;-M3) /s

5-7

where N estimates the number of test problems per condition needed to
guarantee that if the difference between the two distributions is at least
(M;-My/s), then there is at least a l-probabllity of obtaining significance
at the a level in a one-tailed t-test of the null hypothesis of no dif-

ference.

Using this equation, we can determine a minimum sample size for both

groups by specifying the following parameters:

max Pp - a maximum acceptable error rate,
max Py - a maximum acceptable rate of ambiguous results,
a - significance level for t-test

{1-8) - the power of the t-test.

Given these numbers, the minimum sample size for each group 1s derived as

follows:

2{z(l-ay - z(8))*

N - [z(1-max Pg) + z(l-max Pg-max Pu)]2

If Pg + Py £ max Py + max Py, then the probability of obtaining a
statistically significant difference (at the a level) between the two
groups is at least {1-8). As will be illustrated below, using this
equation will often result in a minimum sample size that is very small

(around 5 tests for each hypothesis in a node).

Ap Example

Assume that we have been given the responsibility of testing an
expert system with the simple inference network shown in Figure 5-3. 1In
this inference network, there are three evidence items (evidl, evid2, and
evid3), one intermediate hypothesis (ihypl), and one goal hypothesis
(ghypl). Although the analysis does not depend on how belief values are

calculated, we note here that bel(ihypl) is a linear function of bel(evidl,

5-8

and bel(evid3), and bel{ghypl) is calculated by performing a relative

maximum entropy update given new values for bel(evidl) and bel(ihypl).

evidt

Figure 5§-3: Sample Inference Network

Our first task is to specify a minimum sample size. As evaluators we

make the following judgments:

(L

(2)

(3)
(4)

For both false positives and false negatives, an error rate
greater than 5% is unacceptable. If the error rate is larger
than this, users will simply discard the system.

The system should not generate ambiguous results more than 30%
of the time. Beyond this level, using the system will be
perceived as more trouble than it’s worth.

Set o = .05-—a level commonly used,
Set (1-B) = .90. 1If, indeed, the system satisfies (1) and (2)

above, then the probsbility of obtaining one-tail.d t-test
significance at p < .05 is .9 or greater.

From these four judgments, we get

max P, = .30, max Py = .05, a - .05, and (1-8) - .9.

This gives us

5-9

2{z(l-a) - (B))? 2(1.65 - (-1.28))2
[z(1-Pg) + z(1-Pg-Py) > [1.65 + .39)2

= 4.12,

So the minimum sample size is approximately four test problems per condi-
tion. Even though this seems like a small sample size, if the difference
between the two distributions is substantial (i.e., difference between
means sufficient to give P + Py £ .35), then there is a 9Us chance that
this small experiment will generate a t-test result with p € .05. Conse-
quently, it is unlikely that the expert system, if it satisfies these
criteria, will not exhibit at least some difference between the two

distributions.

We decide to be "conservative" and let N = 8.

After running the 16 randomly selected tests, we get the results
shown in Table 5-1. A standard t-test applied to ghypl indicates a
statistically significant difference between the two sample distributions
(p £ .00005). Clearly the expert system has achieved some discrimination

between H and ~H.

Table S-1: Sample Test Results

Group Output Belief Values

{gypl-true = 1) evidl evid? evid3 ihypl ghypl
0 S .56 .61 .59 .39
0 .4 .43 .28 .36 .33
0 .33 .78 .29 .54 .3
0 .26 .23 .33 .28 .28
0 .48 .26 .32 .29 .34
0 .24 .34 .36 .35 .29
0 .29 .54 .78 .66 .38
0 .48 .48 .34 .41 .37
1 .69 .21 .89 .55 .45
1 .8 .76 .56 .66 .5
1 .44 .89 .48 .69 .42
1 .61 .76 .94 .85 .5
1 .81 .55 .86 .71 .52
1 .59 .56 A .48 L4
1 .76 .48 .69 .59 47
1 .68 .49 .23 .36 A

5-10

. In addition, we estimate a minimum value for Py by
z(l-max Pg) + z(l-max Pg-est{Py]) = est{M;-M,)/s].

The observed mean difference is .119, and the estimate of the

standard deviation of the distributions is .044. This gives us

z(.95) + 2(.95-est[Py])

est[M,-M,) /s

1.65 + z(.95-est[Py]) = .119/.044
z{.95-est(Py]) = 1.05
.95-est{Py] - .85
est(Py] = .1.

This procedure can be repeated for alternative levels of max Pg, from

which one can see the tradeoff between Py and Py. This is illustrated in

Table 5-2.
. Table 5-2: Tradeoff between Py and Pg in Sample Problem

max Pp est Py,

A -.02%

.05 .1

.025 .21

.01 .35

.005 .45

001 .56

* indicates distributions are sufficiently separated that a
single threshold can be set where

P(bel(H)>L|~H) = P(bel(H)<U|H) < max Pg.

Finally, a 90% confidence level for the minimum value of Py can be
estimated by (a) calculating the %0% confidence level for the minimum mean
difference and (b) repeating the above procedure. In the case of ghypl,
the observed difference was .119 and the standard error of the estimate of

. ~he difference was .022. Consequently, the 90% confidence level for the

difference is .119 - .022%t(.9, df=14), which is .C9. This gives us an

"upper bound" on P; of

1.65 + z(.95-est(Py]) - .09/.044
z(.95-est{Py]) = .40
.95-est{Py} - .66
est{P;] = .29.

A similar analysis can be performed for all the nodes in the network. The
t-test results for each node in the sample problem are summarized in Table
5-3,

From Table 5-3 we can draw several conclusions. Overall, the expert
system performs well. As far as the goal node (H vs. ~H) is concerned, a
user willing to tolerate a 5% error rate should find the expert system
advice useful more than 71% of the time, and most likely around 90% of the

time. These results do support the evaluation hypothesis that Py < .3.

Table 5-3: Test Resuits for all Nodes in Sample Problem
(max Pg set at .05)

Estimate Estimate (max Pg = .05)

Standard Standard 30% C.L.
Node M,-M, Deviation Error est Py est Py
evidl .32 .116 .058 .08 .28
evid2 .135 .197 .099 .78 .90
evid3 .218 .222 .111 .69 .86
ihypl .176 .147 .073 .63 .82
ghypl .119 L0446 .022 .1 .29

Regarding the other nodes in the network, it seems that most of the dis-
crimination is obtained from evidl, and that the other nodes contribute

relatively little to the overall accuracy of the system.

Reconsideri he Assumption

In Cases 1 and 2 several assumptions were made. They were:

Al) The expert system considers only two hypotheses, H and ~H.
A2) The belief values sum to one.

Al) The distributions of belief values are normal.

Ab) The distributions of belief values have equal variance.

A5) The thresholds are symmetric.

Each of these assumptions is discussed below, Assumption A3 will be

considered last.

Multiple Hypotheses. If there are just two hypotheses (H and ~H),
with belief values that sum to one (A2), then bel(H) completely summarizes
both values. When there are more than two hypotheses, this is no longer
true. Given a belief value for one hypothnesis, the belief values for the
other hypotheses can still vary. This implies that for each hypothesis,
there is a multivariate distribution of belief values. For instance, if
the expert system discriminates three hypotheses, H,, H,, and H,, then the

output can be characterized as a vector of belief values:

b = <hel(H,) bel(H.), bel(H,)>.

There are two ways to address the multiple hypothesis case. The
first is to perform a wmultivariate statistical analysis. The thresholds
then become hyperplanes in a vector space of possible belief values. For
instance, one might set threshnids U, where for each H;, the decision rule
is to select H, if bel(H,) > U;. 7The area defined by bel(H,) < U, for all i
would then be the uncertain region. Py is the probability of falling into
the uncertain region, while P; is the probability that for some i, bel(H,)

- 1. occurs when H, is false. Conceivably one could generalize the evalua-
tion procedure described in Case 2 to address this multivariate problen.

We have not explored the details of this generalization.

5-13

An alternative approach is to do a pairwise comparison of hypotheses.
This can proceed as follows. First, define a measure, Bel,;, that sum-
marizes the relative belief values of the two hypotheses. For example, we

could set
bel,, = bel(H,)/[bel(H,)+bel(H,)],
or possibly,
bel ; = [bel(H;)-bel(H;)].

Second, determine the minimum sample size required for each pairwise
comparison. Third, select a sampie size for each H, that is greater than
the maximum of the minimum sample sizes required for each pair comparison
involving H;. Finally, collect the test data and compare each pair of
hypothese: s discussed above. This procedure provides a series of tests

that are individually appropriate, but not statistically independent.

Belief Values that do not Sum to One. Many expert systems employ an
uncertainty calculus where belief values do not sum to one or where a range
of possible values is maintained for each hypothesis. For example, in a
Shaferian system of beliefs (Shafer, 1976), bel(H) is often interpreted as
the degree to which the existing evidence supports H, where it often occurs
that bel(H) + bel(~-H) < 1.

Conceptually this case is similar to the multiple hypothesis case.
For each hypothesis, there is a multivariate distribution of belief values.
Consequently, the same techniques apply here. In the case of Shaferian
beliefs, for instance, it seems natural that for each pair of hypotheses H,
and H,, [bel(H,) - bel(H,)] effectively summarizes the extent to which the

expert system finds evidence that supports H; vs. H;.

Unequal Variance. Assumption A4, that the two distributions have
equal variance, is not essential. The main Implication of violating this

assumption is that P,, but not Pr, now depends on the velative fremuencv o
1% U E P)

sampling from the two distributions. This can be seen from Equations [5-1]
and [5-2}.

If assumption A4 is not made, then the procedure described in Case 1
needs to be modified to (1) estimate the variance of each distribution of
belief values separately, and (2) incorporate an estimate of the relative
frequency of sampling from each distribution. Ag long as the thresholds
are symmetric, Pp is unaffected by unequal variances. However, P, will
vary, although its value is bounded by P(U>bel >L|H;) and P(U>bel,;>L|H,),
where H; and H; are the two hypotheses being compared. A "conservative®
estimate for (2) is one that pushes the value for Py close to its maximum

value.

Nonsymmetric Thresholds. For testing purposes, the assumption of
symmetric thresholds is reasonable. Suppose a test that assumes symmetry
(with Pg = x) yields an unacceptably high value for P;. This would imply
that for a decision maker to reduce the value of Py, the decision maker
must accept either P(false positive) > x or P(false negative) > x or both.
Or equivalently, for a given Py, the minmax value for Pg; occurs when the

thresholds are symmetric.

However, if the evaluator wishes to assume nonsymmetric thresholds,
then both Py and Pp will depend on the relative frequency of sampling from
the two distributions. Consequently, if assumption A5 is violated, then
the procedure in Case 2 must be modified to incorporate a subjective
estimate of the relative frequency of sampling from each distribution.
Note again that Py is bounded by P(U>bel ;>L{H;) and P(U>bel,,>L[H,), while
Py is bounded by P(bel,,<LjH,) and P(be1u>UlHJ). Consequently, a "conserv-
ative” estimate of the relative frequency of sampling from the H-true

distribution is an estimate that pushes Py + Pp towards its maximum value.

Distributions are Normal. Assumption Al is expedient. Although
normal distributions are prevalent in nature, there is no guarantee that
belief values are always distributed normally. Furthermore, there are
procedures for testing the hypothesis that & collection of sample points

was generated from a normal distribution. When the test data suggest that

5-15

the distriputlion Is not normal, then cne should consider alternative

procedures (see below).

It should be noted, however, that testing an expert system is often
an expensiveé proposition., As a result, the sample size for each distribu-
tion is often swall (less than ten). Given a swall sample size, it is
unlikely that a sample distribution will lead to rejecting the assumption
of normality, even when the true distribution is not normal. Wuen the

normality assumption is incorrect, we are unlikeiy to dertect {t.

This leaves us with a quandary—routinely use weaker procedures that
make fewer assumptions (viz., nonparametric statistics), or simply assume
normaiity and accept the occasional errors in evaluation that this assump-

tion will entail. In general, we prefer the latter option.

Even if normality is rejected, there are some procedures that can be
used which are analogous to, albeit much weaker than, the parametric
procedures discussed above. Specifically, we define a new measure, d*.
For mutually exclusive hypotheses H; and H,, let Pl and P2 represent the
probability distributions P(bel(H1l)|Hl) and P(Lel(H2){Hl), respectively.
We define

d* = P(x<y|x ¢ Pl and y ¢ P2).

The d* statistic is a measure of the extent to which two distribu-
tions can be separated. From the perspective of decision thresholds, d*

has the following properties:
Property 5-1: Given any Pl and P2 distributions, if P(H) - .5,
then the probability of an error is at least dx/2.
Property 5-2: Given any Pl and P2 distributions, if the decision

threshold is symmetric, then the probability of an
error is at least d*/2.

5-16

From the d* statistic, therefore, we can learn something about the poten-
tial accuracy obtainable using a threshold decision rule. 1If d%/2 is high,

then the expert system cannot be very helpful in discriminating Hl from HD.
stimati d*

The empirical procedure for estimating d* is similar to the para-
metric case. Identify two representative sources (H-true vs. H-false) of
possible test problems. Randomly select an equal number of problems from
each source. Run the expert system against each problem and estimate d* as
follows. Let S1 and S2 be the sample distributions corresponding to Pl and
P2, respectively. If S1 and S2 both contain N observations, then there are
N? pairs of sample points—one from each sample distribution. Let r be the
number of pair reversals—each pair (x,y) where x S1, y S2 and xy. Let e

be the number of equal pairs (if e is odd, add 1 to e). We then get

(r + e/2)
___;;___ﬂ

estimate g% =

This will be a slightly conservative (over) estimate of d*.

To estimate a confidence level for d*, set n to Nd* and then round n
up to an integer value. Then proceed to treat n as though it were n hits
in a series of N Bernoulli trials. Using a binomial distribution, calcu-
late a confidence level for p. 1his will be a conservative confidence

level for ax,.

To {llustrate, consider Figure 5-4.

5-17

| !
.9 10

———
.--—x
Na— 3 X X
wW— %
™
(Y e 4
o —
N— x
o —

@

[} 1
BeltH[>W)
X
X
X X X
X X X X X X
] | | | |] | | | | |
0 .1 .2 3 4 .S 6 .7 .8 .9 1.0

Bel(H|H)

Figure 5-4: Sample Data for Calculating d*®

Here N =~ 10, r = 10, e = 7. This gives us

estimate a% = {10+ 4 g4
100
Furthermore, rounding up Nd*, we get n = 2. In the binomial distribution .
at p = .45, the probability of getting 2 or less hits is less than .1.

Consequently, at the 90% confidence level, we can assert that d* < .45.

CASE 2: HYPOTHESIS TESTING WITHOUT BELIEF VALUES

Many expert systems are categorical. They simply output a recom-
mended solution, often by testing preconditions for a predefined hy-
pothesis. A standard technique (Green and Swets, 1966) for evaluating this
type of system is to apply it to a set of test problems and fill in the

following 2x2 matrix.

Hypothesis is

True False
True True False
Hypothesis Positive Positive
Asserted
to be ralse False True
Negative Negative

5-18

From this matrix one can obviously estimate the probability ¢f each type of
error. Furthermore, one can also estimate the overall "sensitivity” of the
expert system in discriminating tiue ws. false instances of the hypothesis.
This is done by assuming that the process underlying the categorical
assessments was a signal detection process with a single decision threshold
with two identical normal distributions. This model was depicted in Figure
5-1. The normalized difference between the means of the two distrihutions
deflnes the "sensitivity" of the signal detector. This statistic, called

d', is simply calculated as
d' = [z(1-P(false positive) - z(l-P(true positive)].

A small value for d’ (e.g., d* < 1.0) would indicate that the expert systen
is not very sensitive to the hypothesis true vs. false condition, while a
large value (e g., d' > 2.0) suggests that the expert system can effective-

ly distinguish the two states.

This approach can be generalized to a case where the expert system
also may generate an Unknown response. When this occurs, we can add a
third "Unknown" row to the above matrix. Figure 5-2 becomes the underlying

model for this matrix. The procedure for calculating d' remains the same.

Finally, it should be noted that is often used to measure the perfor-
mance of a user/decision aid combination. That is, independent of the
actual outputs generaced by the expert system, one can test to see whether

using the expert system increases a user’'s d’' score.

Sometimes it is possible to assign utilities or costs to different
types of outcomes. For instance, in medical diagnosis, the cost of a false
positive may be only that of performing a second, more precise test, while
the cost of a missed positive may be serious health consequences. 1f one
can combine such costs and utilities into a single scale (call this the
Value scale), then the expected value associated with using an expert

system is simply

5-19

EV = P(true positive) * Value(true positive)
+ P{trues negative) * Value(true regative)
+ P(false positive) * Value(false posirive)

+ P(false negativs) * Value(false negative).

Examples of this approach can be found in Levi (1985), Kalagnanam and
Henrion (1988) and Heckerman (1987).

CASE 3: ASSESSING THE ACCURACY OF QUANTITATIVE PREDICTIONS

Many expert systems generate quantitative predictions as outputs—for
instance, an economic forecasting system that estimates changes in the
Gross National Product, inflation, unemployment, etc. Assuming one has
available a set of test cases where ground truth is known, then a simple
method for "getting a feel" for the accuracy of the system’s predictions is
simply to plot a set of predicted and observed scores and ta compare this
plot with the ideal prediction line. For example, Figure 5-5 plots the
data shown in Table 5-4. When compared to the ideal line, one can see that
the predictive accuracy of the expert system is very high. Furthermore, by
comparison to the ideal line, one can see that the system tends to overes-

timate the smaller values.

Table 5-4: Sample Data for Expert System Predicting Quantitative Values

Expert System Predictions Qbserved Values
120 99
123 127
145 138
165 176

95 112
49 58
96 101
123 110
95 89
86 94
153 167
155 168
78 101
197 188
101 99

5-20

A more formal analysis of predictive vs. observed data can be

. achieved using a statistical procedure known as linear regression. Linear
regression provides two useful outpute. The first output i{s the correla-
tion between the predicted and observed values. The square of this value
(often labeled R?) is an estimate of the variance in the dependent variable
(here the actual score) accounted for by the independent variable (here the
predicted score). In the case of the data in Table 5-4, R? - .8994. The
expert system’s predictions seem to account for mosc of the cbserved
variance. The second output is the regression line itself. This line is a
"best fit" summary of the plot. If the regression line deviates from the
ideal line, then this suggests some systematic deviations from the best
prediction—mot just random error. For instance, the regression line in
Figure 5-5 has a positive intercept, suggesting again that the expert

system is either overestimating low values or underestimating high ones.

COMPARISON OF EXPERT SYSTEM PREDICTIONS AND OBSERVED VALUES

OmMm<HEAAREO
-
w
4]
+

89+ REGRESSION
} LINE

R e
A

X
- e b b — b e o b — b — 4

PREDICTIONS

Figure 5-5: Plot of Predictions, Outcomes, and Regression Line for Table 5-4

Finally, if knowledge engineering is still ongoing, one might con-
sider using the regression line as a basis for systematically modifying the

knowledge base. Procedurally this can be achieved by adding to the pre-

dicted score the difference between the predicted score and the regression
line scores. For example, if the score predicted by the expert system is
120, and the corresponding regression line score {s 125, then the knowledge
base should be adjusted so that it reports 125 where it used to report 120.
If the linear regression analysis {s based on a lot of data, then this

modification to the knowledge base should increase performance accuracy.

CASE 4: COMPARISON TO EXPERT JUDGMENT

In the previous sections we made two important assumptions: first,
that the performance objective of the expert system was to minimize error;
second, that test cases could be generated where ground truth is not
available. For many expert systems, however, the performance objective is
not only to minimize error, but also to "capture” human expert judgment;
that is, the system is designed to codify expert knowledge. When this is
the case, an important evaluation criterion is the extent to which the

expert system agrees with human expert judgment.

The problem of measuring expert judgment/expert system agreement 1s
similar to Case 3 where one is assessing the accuracy of quantitative
predictions. Here both the expert and expert system will express quantita-
tive judgments (usually belief values) for each of a set of final and
intermediate hypotheses. For instance, if the expert system evaluates
whether hypothesis H or its negation is true, then one can compare the

expert system’s bel(H) values with those of one or more experts.

To 1llustrate this process, consider Table 5-5. Here the belief
values of an expert system and three experts are summarized for twenty test
cases. As before, one can perform a regression analysis comparing the
system’s judgments with each of the experts, or some averaging of the

expert’s opinions.

5-22

Table 5-5: Twenty Judgments from Three Experts and Expert Systems

Expert 1 Expert 2 Expert 3 Experts
25 63 52 46
86 82 53 73
94 113 93 100

163 140 162 155
166 129 110 135
50 55 69 58
52 63 69 61
58 12 53 41
94 99 84 92
163 187 140 163
112 45 96 84
198 129 160 162
44 32 53 43
13 36 62 37
125 92 100 105
146 163 120 143
72 92 121 95
i3z 69 123 108
163 94 126 127
153 152 155 153

Figure 5-6, for instance, compares the system's belief values with the

average of the three experts’ judgments.

line deviates significantly from the ideal line, and there is a lot of

fluctuation around this line.

average of

Expert
System

76
77
98
168
123
66
77
B4
95
122
90
144
67
48
100
127
89
121
129
113

As we can see, the regression

This indicates that there are significant

differences between the experts’' and expert system's judgments.

5-23

AR R A R A g ‘III'
B Ve e
200+ - p

.) .
: ‘ / 7 |
E | -
R I x //// |
A { * . / * !
G | {// |
E 131+ +
| S |
E | 2 % i
X | * / i
P | Pl i
2 I IDEAL » !
R 67+ LINE - -
T ! ///;‘* !
]) o |
J]' * // l
v I / REGRESSION t
0 ! 7 Lk !
G O+ y . *
M P ;
B R I) I N R I I B I I I AP *+ -
0 67 133 200

EXPERT SYSTEM OUTPUT
Figure 5.6: Comparison of Expert System and Average Expert Judgment

A more detailed analysis can be performed to examine the intercor-
relation of the expert system's belief values and the various expert .
judgments. For instance, the set of intercorrelations for the data in
Table 5-5 is found in Table 5-6. As can be seen, the correlation between
the experts is about the same as the correlation between the expert system
and the experts. This suggests that, although there are some differences
between the expert and expert system judgments, these differences do not
suggest that the expert system’s judgm-onts are outside the norm of expert
opinion. 1In short, the overall evaluation of this system {s that it
reflects expert judgment. (Note, however, that it is still possible that a

more detailed analysis will reveal some consistent differences.)
Table 5-6: Intercorrelation of Columns in Table 5-5

Average of Expert

Expert 1 Expert 2 Expert 3 Experts System
Expert 1 1.0 77 .87 .95 .21
Expert 2 1.0 .78 .91 .72
Expert 3 1.0 .94 8¢
Average of Experts 1.0 .90
Expert System 1.0

SOME OTHER APPROACHES

In this chapter some procedures for evaluating the performance of an
expert system were recommended. Before closing this chapter, we wouid like
to mention some other approaches that are found in the literature, and

explain why we do not recommend them.

Probability Scoring Rules. 1In the judgment and forecasting litera-
ture (as well as in the Bayesian network literature), probability scoring
rules are commonly used to assess the accuracy of probabilistic judgments.
The most commonly used scoring rule, initially proposed by Brier (1950) is
the mean probability score (MPS) which is simply the average squared error
of predictions vs. outcores. For example, suppose that on three consecu-
tive days a weather forecaster predicts a 20%, 60%, and 80% chance of rain.

In fact, it rained only on the third day. Then
MPS = [(.2-0)% + (.6-0)% + (.8-1)%]/3 = .147.

Our approach differs from the use of probability scoring rules in two
ways. First, we have focused on measures that have a "beha.loral" inter-
pretation. Py and P; tell us something about how a user can use an expert
system. In contrast, the behavioral implications of "MPS = _147" are
unclear. Second, probability scoring rules measure the deviation of
outcomes from the absolute belief values. This presupposes that the belief
values are probability estimates. FPurthermore, it may fall to m-asure
discrimination. Note, for instance, that in Table 5-1, bel(ghypl) is
almost always less than .5, even when ghypl is true. (Consequently, the
MPS score for this expert system would be very low, even though the expert

system effectively diccriminates when ghypl is true vs. false.)

Comparison to Linear Models. Anothexr approach (Levi, 1989) involves
the use of a linear regression analysis to identify any linear relation-
ships between the cues (evidence {tems) and (a) human expert judgments and
(b) the correct diagnosic (see Levi, 1989, for discussion). [he argument
here is that an expert syscem is useful only if both (a) and (b) reveal a

large nonlinear component, and that expert judgments effectively predict

the nonlinearity betwecn the cues and correct diagnosis. f these condi-
tions are not met, then a complex expert system could be replaced by a much
simpler linear model. There is ro "added value"™ in building an expert
system. Although this added value approach clearly has merit, it really
addresses an orthogonal issue. Although it may be possible to conclude
that the expert system has "no added" value vis. a vis. a linear model,
this does not impact performance. Performance :emains the same even if we
end up concluding that the ex:ra cost incurred to build the expert system

was 1ot well spent.

Palred t-Tests. An alternative approach to compare human and expert
system judgments (O’'Keefe et al., 1987) is to use a paired t-test analysis.
Here one does a node-by-node comparison t-test comparison to determine if
there is a statistically significant difference between the human expert
and expert system judgments. An even more strirgent procedure is to
simultaneously compare all the nodes using Hotellings’ T? analysis.
Although this approach has some merit, it should be noted that the statis-
tical significance results, themselves, are not very useful. This is
t ecause, almost certainly, there ir some difference between expert system
and human expert judgment. And given that some difference does exist, one
is almost certain to get a result that indicates a statistically reliable

difference betiveen the expert system and the human expert.

5-26

CHAPTER 6:

MORE ABOUT EMPIRICAL TEST AND EVALUATION METHODS

In contrast to (a) technical test and evaluation procedures, which focus
on how well the expert system’'s knowledge base, inference engine, and service
requirements were developed, or (b) subjective test and evaluation procedures,
which focus on how much users liked the expert system, empirical test and
evaluation procedures focus on how well decision makers performed the task
with (versus without) the expert system. Remember, the expert system may be
addressing only part of a larger organizational decision. And in manv cases,
the operator, who may be more or less accurate than the expert system’s
knowledge base, is using the system to support his/her decision making;
consequently, the operator can override the expert system's recommendation.
Therefore, even if the technical evaluation of the knowledge base shows that
it has high predictive accuracy, the persons working with the expert system,
and the larger organization of which they are a part, may or may not perform

better with the expert system.

This chapter will explicitly consider experiments, quasi-experiments,
and case studies. In particular, experiments are most applicable during
prototyping and at later steps in the process after the expert system has been
developed, packaged, and transferred to an (intermediate) test organization or
the actual target organization. However, the randomization and sample size
requirements of experiments are not always possible in the latter kinds of
environments. Consequently, the second part of the chapter discusses the use
of quasi-experimental and case study designs for objectively assessing the
performance impact of expert systems in more operational versus developmental
environments. As Yin (1984) has pointed out, quasi-experiments are appropri-
ate in those settings where the logic of experimental design can be applied
even though there is less experimenter control. In contrast, case studies are
appropriate in settings where even the minimal experimental control required
for quasi-experiments is not possible. In case study designs, as in all forms
of empirical research, it 1s the logic of the research design linking the darta
collected—and the conclusions drawn from it——to the initial questions driving

the study that determines the validity of the research. In our case, the goal

6-1

is to rule out rival hypotheses for explaining performance differences with

(versus without) the expert system.

The purpose of this chapter is to help one perform better emy::ical
evaluations. The discussion will be at a general level, for it i{s not
presumed that this one chapter can even begin to cover all the details found
in experimental design and statistical analysis texts. Rather, the goal is to
sensitize the reader to the different issues that must be considered when
attempting to empirically demonstrate the performance benefits of expert
systems. Such a demonstration typically is (and in our opinion should be)
essential for sponsors to approve the transfer of an expert system into an
operational environment. After all, the bottom line is typically whether
people can perform their tasks better, faster, and/or more cheaply with (than
without) the expert system. That’s what the sponsor wants to know. Yet, as
Sharda et al. (1988) point out, the majority of claims regarding the benefits
of decision support and expert system technology are based on studies that
have not effectively controlled for alternative, plausible hypotheses to

explain improved performance.

Again, from the perspective of the SHOR paradigm, the test and evalua-
tion team's job is to help members of the sponsoring team decide whether the
expert system is an effective option for dealing with hypotheses regarding the
current and/or future problem environment with which the organization will be
dealing. Remember, the initial decision to build the expert system was
ncthing more than a hypothesis that the expert system would improve the
organization's decision making and, in turn, its performance. The test and
evaluation team can use empirical evaluation methods to not only help members
of the sponsoring team assess the adequacy of this hypothesis, but also
identify what correc ive actions to take if the expert system is found
lacking. This latter point is extremely important from a prototyping perspec-
tive, for empirical feedback provides important guidance for improving the
system. Correspondingly, the failure to identify whether or not an expert
system actually caused improved performance, as suggested by the reference to
Sharda et al.’s findings above, eliminates the opportunity to improve a

deficient system.

6-2

The remainder of this chapter is divided into two parts. The first part
identifies issues to consider when conducting experiments; the second part
addresses quasi-experiments and case studies. In all cases, we are focusing
on ground truth performance criteria, which are shaded in Figure 6-1. Our
principal concern is on assessing the adequacy of an expert system on the
three ground truth performance criteria: speed, accuracy, and bias. As you
will remember, accuracy and bias also were the principal evaluation criteria
when assessing the predictive accuracy of the knowledge base. Now, however,
we are considering the performance of the person (or organization)/system

unic.

It is important to note that we can also use subjective performance
criteria as dependent measures in an experiment. That is, we could assess how
well or fast experts thought they solved test problems with (versus without)
the expert system. Such assessments are important for two reasons. First,
ground truth performance measures are often difficult to obtain (or simply not
obtained) in operational environments when a test is not being conducted. In
such situations, users’ judgments as to the speed and quality of the solutions
generated with (versus without) an expert system often determine whether or
not they will use the system. Second, empirical research (e.g., see Cats-
Baril and Huber, 1987) indicates that ground truth and judgment measures of
performance do not always agree. The test permits one to assess the correla-

tion between ground truth and judgment measures of performance.

EXPERIMENTS

Experiments are, by far, the most common and commonly thought of empiri-
cal evaluation method. They are particularly appropriate when a number of
people would actually use the expert system, for experiments are designed to
help generalize from a test sample to the larger population, which, in our
case, would be system users and their organizations. However, experiments
also can be conducted even if the expert system is being developed for use by
one person, In this case, for example, the prospective user could solve a
number of representative problems with and without the expert system in order

to assess whether the user performed better with the system.

6-3

powaw uoneniead pue 1sa) [eouidw3 Aq passessy buisq elaiud uoneniers :1-9 ainbi4

3UNIONYLS
/$34N0320Hd
TWNOILVZINYOHO
40 1OVdWNi @ WILSAS i634X3
ONINIVHL/STUNS 40 AONIHYISNVEL @
'QYOIHOMWIALS IOVH UNOHLVINIS U

WHOM 40 LOVdN @

10vdwWh
TYNOULVZINYOHO

40 AOVNO3OV @

INdINO/ANGNI @
INIHOS
NOILVYANISIWd3IY

40 ALNBYIAIDOV @
$4NS3

40 ALUNBYI4IOOY @
NOILOVHIANI
INIHOVWNYA

30 ALNMBYL4300V @
ISNJO3Sv3 @
IONIAISINOD @

— NOILYNVdX3 ;

NOWVOT1dav
40 3d00S _r

NONIGO | |

I19vAHISE0 _

|

|

_

.

SNOSV3Y 40 ALWNO @
SYIMSNY JO ALNVIO ©
NSV L HSITNODJY QL INIL @
INIL ISNOJS3Y @

— INIWOONT b'._

_

]

-

| auavsn |

[3onvwbO343d |

{

i

SINFNIHINOIE TINS -
NOILVININNOOA -
SINIWIHINOIY viva -
SLVWHOA -

NOILVUDIUNIWIISAS ©
SHOHHI LN LNO/LNGNI -
ONIIONYH NOHVYOVED3A -
ONIJWNI/3SN 3UNLY3d -
(FUVAMAHYH] ALTUBYIYD -
(3UYMaLVH) ALIBWIN3Y -
SININIVINOIY 30VdS -
INILNAY -
INILdN-13S -

3DVEN HIINANOD @
ALTEVIHOG -
NDIS3Q -

WILSAS HIININOD @

Jsve
JOCIMONI JO ALIBVIHIGON -
3OUNOS 30 ADVYNOIAV -
ALTNBVI4300V
NOLLVIN3S3IHdIH ID0ITWONM -
SINY 4O ADVHNADIIY -
S10Vd JO ADVHNDOY -

ADVHNOOV FAILNATHY @

SNOILV LW
FOAIMONN Q3N -
Q3HIAOD AT3LINOD
NOISTIONOO/NOLLYOIddY -
SANdNI Q3HISIA TV -

SSINILI WO TYNOILONNI @

a3sns3univii e
3SN 40 HINNW @
ISN SO INAX3 @

SOGN3 Qvaa -

NOISNTONOD 318VHOVIUND -

SINIVA 31NGIKLLY VDI -

$3NA

JANGIHLLY 0FONTHIIIUNN -
SSINILITINOD TWOIDO0T @

S3T0H HVINOYID -

SITNY DNLLITINOD -

S3INY GINNSENS -

S3NY INVANNQ3Y -
ASNILSISNOD wIDOT @

[inawvoo

— JHNLONYLS |_

L

i

_

[3omuss. | [swona3onauasni] [3sve 3oa3mony|

_

_

*

TIVH3IAO

6-4

One typically thinks of two kinds of experiments. The first kind tests
the expert system against objective benchmarks that ofren form performance
constraints. When the expert system passes the benchmark, it proceeds
further; when it fails, it undergoes further development or is set aside.

"For example, it is not enough to know that with the aid the user can arrive
at a decision in 30 min. If the organizational user required a decision in 30
min, the aid would be effective, If a decision was needed in 15 min, the aid
would not be effective" (Riedel and Pitz, 1986, pp. 984-985).

First, it should be noted that such performance benchmarks differ from
the more traditional time and efficiency measures used to benchmark computer
systems. Time and efficiency benchmarks typically get developed during
requirements analyses emphasizing a features-based approach. Although such
performance constraints may be necessary in real-time, life-critical activi-
ties, they are unnecessary for many expert system applications. Consequently,
we are not going to consider the timing and efficiency approach further.
Readers interested in it are referred to Press (198%), who benchmarked
different expert systems on the time required to load and execute different
types of knowledge bases, and the amount of disk space required in source and
fast-load formats. Although Press obtained empirical data assessing different
systems, his focus was on the "service requirements" in our evaluation

hierarchy, not our performance criteria.

Second, performance benchmarks, like those illustrated in the quote by
Riedel and Pitz, represent noncompensatory decision rules:; that is, perfor-
mance on other evaluation criteria do not compensate for failing the perfor-
mance benchmark. Such a position may, for example, be inconsistent with the
compensatory decision rule guiding the sponsoring team’s intuitive decision-
making processes or more formal subjective methods, such as multiattribute
utility technology. After all, it’s quite possible that the sponsoring team
might be willing to give up some time for task accomplishment (or some
whatever) in order to gain even a little improvement on other MOEs, such as

decision performance or personnel staffing requirements (or whatever).

The second kind of experiment, and the one that is focused on here, is a

factorial design where (a) one or more factors are systematically varied as

6-5

the independent variable(s), and (b) the dependent variable(s) are quan-
titative, objective measures of system performance. As summarized in Table 6-
1, there are five basic components of most factorial experiments. First,
there are the participants in the experiment. (They are often called subjects

or test subjects even though they are not the subject of the test.)
Table 6-1: Some Summary Comments About Experiments

Two Typical Kinds:

Benchmark Testing
Factorial Designs

Components of Factorial Experiments:

Participants

Independent Variables

Task

Dependent Variables (and measures)
Experimental Procedures

Statistical Analyses

General Approaches for Controlling Rival Hypotheses:

Include in Experimental Design
Eliminate Their Ability to Affect the Results

Second, there is the experimental condition(s) or independent vari-
able(s) of interest, such as whether the participants perform the task with
(versus without) the expert system. For example, there were two independent
variables in the DART experiment: the "degree of support" and "problem type."
There were two levels on the “"degree of support" independent variable. The
"unaided condition" was a control group; it represented the degree of support
the decision maker had without DART. The second level was the "aided"
condition; it represented the support level provided by DART. The "degree of
support" variable need not be limited to two levels. Indeed, it might be
extremely advantageous to evaluate two or more varlants of the expert system,
particularly during prototyping when there 1s substantial uncertainty about
how sophisticated a system users need. And, in the DART experiment, there

were two different problem scenarios because of the development team’s concesrn

6-6

about DART's performance being sensitive to the characteristics of the

scenario. And, as it turned out, it was.

Third, there is the task that the participants are to perform during the
course of the experiment. The level of task difficulty should be either as
representative of the operational envirorment as possible or matched to the
hypothesized performance capabilities of the expert system. The capabilities
of the expert system depend on its stage of development (e.g., see Gaschnig et
al., 1983; HMarcot, 1987).

Fourth, there is the dependent variable(s) (or MOEs) of interest. As we
noted in the introduction to this chapter, we are interested in testing the
expert system on one or more of the “ground truth" or "judgment"™ performance
criteria in our evaluation hierarchy. Ground truth measures of accuracy and
bias or, more globally, decision quality, depend on having correct answers.
Judgments of decision quality can be made by either the participants in the
experiment, who may or may not be experts in the substantive field depending
on the proposed users of the system, or other experts. The judgments of

experts 1s obviously the preferred judgment measure.

Ground truth measures are the preferred quality measures. If experts are
used, attempts must be made to keep them blind as to which experimental
conditions produced the solutions so that this information does not inadver-
tently bias their ratings. Such a context is often referred to as a Turing
test. This was done in the DART experiment; see Chandrasekaran (1983) and Yu

et al. (1979) for other examples.

And, fifth, there are the procedures governing the overall implemen-
tation of the experiment. Substantial care should be directed toward accu-
rately representing the unaided as well as aided condition to ensure a fair
test. If performance is better in the "aided" condition, we want to be able
to say that it is due to the expert system and not some other extraneous
factor. In order to do so, we need to (ideally) try to control for all
"plausible rival hypotheses" (Campbell and Stanley, 1966, p. 36) that might
explain the obtained findings. Toward that goal we introduce the concepts of

reliability and validity. [Note: Statistical analyses-—the sixth component

6-7

of experimental designs—will be considered later in this section of Chapter
6.]

R bility and Validity Broadly Defined

Yin (1984, p. 36) defines reliability as "demonstrating that the opera-
tions of a study-—such as the data ccllection procedures—can be repeated,
with the same results. The key concept i{s replication. In contrast, "valid"
is defined by Webster’s dictionary (1966, p. 1608) as that which is sound
because it is "well grounded on principles or evidence.” If an experiment is
valid, its conclusions can be accepted; that is, rival hypotheses have been

controlled for.

An experiment can be reliable, but its conclusions invalid for numerous
reasons that will be considered below. However, an experiment can not result
in valid conclusions if it is unreliable; that is, one can not conclude that
the results are well grounded if the evidence upon which they are based is
undependable. Consequently, the basis for good experimentation is reliable
(i.e., dependable) procedures and measures. Although far from trivial,
reliabilicty is typically possible in experimentation because of high experi-
menter control. The experimenter can pilot-test and subsequently modify the
procedures and measures over and over again until they produce the same
results when applied to the same situation, regardless of who performs the
experiment. In contrast, there exist a number of threats to the validity of

our conclusions regardless of the experiment’s reliability.

There are four types of validity that need to be considered when
performing experiments: construct, internal, statistical conclusion, and
external. Each type is now discussed within the context of experiments, and

again in the sections addressing quasi-experimental and case-study designs.

Internal Validitc
Yin (1984, . p. 36) has defined internal validity as "establishing a

causal relationship, whereby certain conditions are shown to lead to other

conditions, as distinguished from spurious relationships.” That is, we wanc

6-8

to be able to say that our independent variables, and not some other uncon-
trolled-for factors, caused the observed effects on ocur dependent variables.
The "uncontrolled-for factors" represent rival hypotheses for explaining the
experiment’'s results. Moreover, as Cook and Campbell (1979, p. 38) point out,
"Internal validity has nothing to do with the abstract labeling of a presumed
cause or effect; rather, it deals with the relationship between the research
operations irrespective of what they theoretically represent” (italics

theirs). This latter issue is considered under construct validity below.

There are two general approaches to controlling rival hypotheses,
particularly those that might be considered spurious threats to causal
inference. The first approach is to somehow include them in the design. One
way to do so is to include rival hypotheses as other independent variables in
the factorial design. For example, two different problem scenarios were used
in the DART experiment in an effort to minimize the degree to which the
results might be scenario-dependent. Another way to includc rival hypotheses
in the design is through the nature of the design itself. For example, Sharda
et al. (1988) used a longitudinal, factorial design in order to examine
whether time was a plausible hypothesis to explain (initial) performance
decrements with decision support technology, a position consistent with a
learning theory perspective. The point is that the one way to control for
rival hypotheses is to use an experimental design that will explicitly permit

one to test their effect on performance.

Although the tirst approach for controlling rival hypotheses is power-
ful, it has two limitations. First, it suffers from sample size limitations.
The number of independent variables, the levels on these variables and, more
generally, the experimental design itself need to be considered with care
because of their implications for the number of participants required for
statistical testing purposes. The larger the number of cells in the matrix
representing the factorial design’s pairing of levels on the independent
variables, the more participants required to fill the cells and, thus, perform

the experiment.

Second, it presumes that one knows all plausible rival hypotheses.

This, however, is not possible; there may always be alternative hypotheses for

6-9

explaining the data. That is why the philosophy of science focuses on
disconfirmation—not confirmation—of hypotheses. To quote Campbell and
Stanley (1966, p. 34), "In a very fundamental sanse, experimental results
never ‘confirm’ or ‘prove’ a theory—rather, the successful theory is tested
and escapes being disconfirmed ... An adequate hypothesis is one that has
repeatedly survived such probing—but it may always be displaced by a new

probe."

The second general approach for controlling for plausible rival hypo-
theses is attempting to eliminate any possibility that they can affect the
results. In particular, one wants to control for extraneous factors tha:
significantly impair our ability to make valid causal inferences. This second
approach is exemplified by the concept of randomization. Webster’s dictionary
(1966, p. 1204) states that "random applies to that which occurs or is done
without careful choice, aim, plan, etc.)." Arbitrarily assigning test
subjects to the "aided" and "unaided" conditions in the above factorial
design, or arbitrarily determining the order in which DART test subjects
worked the test problems with or without the expert system, illustrates

randomization.

It can not be overstated how important randomization is in experimen-
tation. This point can be illustrated by considering the "threats to internal
validity" that randomization eliminates as plausible rival hypotheses. To
quote Cook and Campbell (1979, p. 56), "When respondents are randomly assigned
to treatment groups, each group is similarly constituted on the average (no
selection, maturation, or selection-maturation problems). Each experiences
the same testing conditions and research instruments (no testing or iastrumen-
tation problems). No deliberate selection is made of high and low scores on
any tests except under conditions where respondents are first matched accord-
ing to, say, pretest scores and are then randomly assigned to treatment
conditions (no statistical regression problems). Each group experiences the
same global pattern of history (no history problem). And if there are
treatment-related differences in who drops out of the experiment, this is
interpretable as a consequence of the treatment. Thus, randomization takes
care of many threats to internal validity." (Table 6-2 more formally definece

the threats to internal validity considered above.)

6-10

Table 6-2: Definitions of (Selected) Threats to Internal Validity

Selecrion: A threat due to the kinds of participanis in one group
versus another. [Notc: Selection can interact with many
of the other threats listed below.]

Maturation: A threat due to participants gaining experience or in
some manner changing during the course of the research.

Testing: A threat potentially resulting because of the number of
times participants’ responses have been measured during
the research.
Instrumentation: A threat due to changing the way the dependent variables are

measured during the research.

Statistical Regression: A threat due 10 selecting participants for different (and particu-
larly extreme) groups on the basis of pretest measures with less
than perfect rcliability.

History: A threat due to an external event taking place during the
course of the research that is not the treatment of inter-
est.

True experiments include randomization. When randomization is not
possible, one can employ quasi-experimental designs. However, quasi-
experimental designs are not as effective as experimental designs in con-
trolling extraneous factors. To quote Cook and Campbell (1979, p. 56), "With
quasi-experimental groups, the situation is quite different. Instead of
relying on randomization to rule out most internal validity threats, the
investigator has to make all the threats explicit and then rule them out one
by one. His task is, therefore, more laborious. It is also less enviable
since his final causal inference will not be as strong as i1f he had conducted
a randomized experiment. The principal reason for choosing to conduct
randomized experiments over other types of research design is that they make

causal inference easier.”

Randomization is the best means for essentially equating the "aided" and
"unaided” conditions prior to beginning the experiment. By doing so, it
significantly limits the number of rival hypotheses that can be used to
explain the obtained data, which in our case would (hopefully) be signifi-
cantly better performance with the expert system. Randomization does not,

however, rule out all threats to internal validity. In particular, Cook and

6-11

Campbell (1979, pp. 54-55) have identified four threats to internal validity

that are not controlled for by randomization.

The first threat is the "diffusion or imitation of treatments" that may
arise if members of the experimental and control groups can talk to each other
during the course of the experiment and in some way obviate the potential
effect of the treatment (e.g., the expert system) because of the information
they communicate. The second threat is the "compensatory equalization of
treatments® that may occur if administrators are reluctant to tolerate the
perceived inequality between the experimental and control groups and, conse-
quently, do not enforce the procedures distinguishing the two. The third
threat is the "compensatory rivalry by respondents receiving less desirable
treatments;" that is, members of the control group act to reduce or reverse
the expected difference. Cook and Campbell note that this threat is particu-
larly likely when intact units are assigned to different conditions or if
members of the control group perceive themselves to be disadvantaged if the
treatment condition is successful, both of which may happen in field tests of
expert systems. The fourth threat is the "resentful demoralization of
respondents receiving less desirable treatments," and represents the converse

or the third threat.

Another threat not controlled by randomization is the unintentional
confounding of the experimental treatment (e.g., the expert system) with some
other factors. With this point in mind, we now turn to consider construct

validity.

Construct Validity

Yin (1984, p. 36) has defined construct validity as "... establishing
good operational measures for the concepts being studied.” Good construct
validity means that we are measuring that, and only that, which we want to be
measuring. Of particular concern in empirical tests of expert systems is that
the "with expert system" condition is not confounded by something else. If
confounding exists, then the “"something else" represents a rival hypothesis

that could explain our obtained results.

6-12

The practice of giving control subjects placebos in medical research is
a good example of trying to control for the nossible confounding Lotween the
helpful concern of the physician and the chemical effects of the medication.
Similarly, if one considers an expert system as analogous to a new medication,
is the positive effect of a expert system the result of the DSS or the helpful
concern of senior-level management? If it’'s the latrer, performance will
deteriorate once the expert system has been declared a success and its users

are no longer the attention of upper-management scrutiny,

Possible confounding is also important when the system has a negative
impact. For example, Markus (1984) used a case study design to show that the
negative resistance to an implemented information system was not a function of
the system’s technical quality, but its mismatch with the organization's
interaction patterns. Kaplan and Duchon (1988) used a case study and survey
research approach to demonstrate that the response to an organization-wide
information system was a function of users’ perception of “heir johs, not the

system.

If we have some idea of what "cther" variables may be confounded with
our experimental conditions, then we want to either (l) take steps to elimi-
nate thei: potential influence on our evaluation, (2) systematically incorpo-
rate them into our exp rimental design so that we can directly assess their
effect, or (3) measure them so that we can perform a "post hoc" assessment.

In choosing either cof the latter two options, our goal is to measure each of
these rival hypotheses (or constructs) in order to test their predictions with
the collected data and, thereby, assess which hypotheses have been falsifi~d.
[Again, the perspective is on disconfirmation, not on confirmation, although
the latter is how researchers typically report the implications of their
findings.] More generally, the goal is valid causal inference. Since this is
the goal of all empirical test and evaluation methods, not just experiments,
the above points will be considered again when quasi-experimental and case

study designs are addressed later in the chapter.

6-13

Statisvical Conclusion Validity

In contrast to internal and construct validity, "[s]tatistical conclu-
sion validity is concerned not with sources of systematic bias but with
sources of random error and with the appropriate use of statistics and
statistical tests" (Cook and Campbell, 1979, p. 80). The concern is with (1)
whether the study is sensitive enough to permit reasonable statements regard-
ing the covariation between independent and dependent variables, and (2Z) what

constitutes appropriate tests of these statements.

There are two types of potential errors when performing statistical
tests. The first type, called a Type I error (alpha), is the probability of
incorrec:ly rejecting the null hypothesis, which is that there is no differ-
ence in the eifect of the experimental conditions on the depende\t variables.
For an experiment assessing an expert system’s effect on erformance, it is
the probability of incorrectly concluding that there is a difference in the
performance levels obtained with (versus without) the expert system when, in
fact, there is nc difference. The second type of error, the Type IT error
{beta), is the probability of incorrectly accepting the null hypothesis. In
our case, it is the probability of concluding that there is -i0 difference in
the performance levels obtained with (versus without) the exper: system when,
in fact, a difference exists. A test’s statistical power is the complement of
its Type II error level; that is, l-beta. Statistical power is the probabili-
ty that a statistical test will correctly reject the null hypothesis.

One wants to set up an experiment that appropriately balances the two
types of errors. Such a balance is required because the beta and statistical
power values are constrained by the value set for alpha. As Baroudi and
Orlikowski (1988, pp. 88-89) point out, "The traditional belief is that the
consequences of false positives are more serious than those of false negatives
(Cohen, 1965). Therefore, Type I errors are usually guarded against more
stringently. The distribution of risk between Type I and Type II errors,
however, needs to be appropriate to the situation at hand. Mazen et al.
(1987) present a graphic illustration of a case [the ill-fated Challenger

space shutcle] where the risk of incurring a Type II error [saying there was

65-14

no problem when there was| far outweighed that for Type I [saying there was a

problem when there wasn’t]."

"Researchers who wish to conform to the convention of protecting them-
selves more against false positive claims should set alpha to .05 and beta to
.20 (four times as much) (Cohen, 1877). Accepting these recommended values
for alpha and beta results in a .80 value for power (l-beta), meaning that a
statistical test having a power value of 0.80 has an 80% probability of
detecting an effect if it exists. Cohen’s prescription of a .80 conventional
power level has become widely accepted as the norm ..." Cohen (1977), as well
as other texts (e.g., Bailey, 1971) provide statistical tables for calculating
statistical pow. - on the basis of the alpha level, sample size, and predicted

effect of the treatment.

Baroudi and Orlikowski (1988), Cohen (1977), Cook and Campbell (1979)
and other researchers (e.g., see also Bailey, 1971) have discussed ways to
increase the statistical power and, more generally, the "statistical con-
clusion validity" of one's experiments. Five will be considered here.
Perhaps the most obvious way is to increase the sample size; that is, the
number of people (or organizational units if that is the appropriate unit of
analysis) participating in the experiment. The larger the sample size, the
more precise the sample estimate of the values on the dependent variable for

each condition, consisteat with the Law of Large Numbers.

Second, attempt to increase the reliability of the experiment. For
example, increase the reliability of the measurement instruments. As Cook and
Campbell (1979, p. 43) point out, "... unreliability inflates standard errors
of estimates and these standard errors play a crucial rele in inferring
differences between statistics, such as the means of different treatment
groups." Similarly, increase the reliability of the procedures for implement-
ing the different conditions in the experiment. By standardizing how people
receive the treatments, one will decrease the error variance and, thereby,

increase the probability of detecting true differences.

Third, give careful consideration to the research design. As Kraemer

and Thiemann (1987) suggest, include only factors that are necessary to the

6-15

research question, or that have a documented and strong relation to the
response. Including marginally relevant factors decreases statistical power
if not appropriately compensated for by an increase in the sample size. In
addition, try to allocate an equal number of test subjects to each condition.
As Baroudi and Orlikowski (1988, p. 10l1) point out, "... if the group sizes
are unequal, attenuation of observed effect sizes can occur, which potentially
undermines the statistical power of the analysis, regardless of the total g."
Also, if possible, use repeated measure designs, like the one in the DART
evaluation. By repeatedly measuring the test subjects, one is able to
partition out the error variance due to individual (versus treatment) differ-

ences and, thereby, Iincrease the statistical power of the test.

Fourth, give careful consideration to the research question. As dis-
cussed above, consider which of the two types of error is most important in
your experiment, and proceed according. Also, consider whether your hypothe-
sis is directional or not. It might be, for example, that a sponsor will
consider implementing an expert system only if it can be demonstrated that it
improves performance during its operational test; poorer or even equivalent
levels of performance to those achleved without the system are, for whatever
reason, unimportant. In such a case, it is possible to increase the power of
the test simply by moving from a two-tailed to one-tailed test, for a one-
tailed test with an alpha of .05 has the same power as a two-tailed test with
an alpha of .10, all other things being equal.

Fifth, consider the "effect size"” that is of utility to the sponsors.
"Effect size" is the differ=nce in the performance levels achieved by the
different conditions that is of scientific significance or value. The larger
the "effect size™ that is of importance (e.g., performance improvements of
1008 vs. 108, or 3 vs 1/3 standard deviations), the smaller the sample size
required to find the effect. Lehner and Ulvila (1989) have shown that a
surprisingly small number of test cases is required to test high utility

performance enhancements for expert system users.

Thus far, we have not indicated what statistical tests should be per-
formed; we have simply focused on the more general issues inherent in consiu

ering statistical conclusion validity. Moreover, we are hegitant to go into

6-16

much detail about statistical tests because we know that adequate consider-
ation of them takes substantially more space than is available here. Never-
theless, consistent with the approach taken by O'Keefe et al. (1987), we
briefly overview two classes of statistical tests. [Note: These tests are
listed in Table 6-3 for summary purposes, as are the definitions of Type I and

Type II error and the general approaches to increasing statistical power.]

Table 6-3: A Summary of Issues Involved
in the Discussion of Statistical Conclusion Validity

Definitions:
Type I Error: The probability of incorrectly rejecting the null hypothesis
that there is no difference between test conditions.
Type Il Error: The probability of incorrectly accepting the null hypothesis
that there is no difference between test conditions.
Statistical Power: The probability of correctly rejecting the null hypothesis that

there is no difference between test conditions.
General Approaches to Increasing Statistical Power:
Increase sample size
Increase the reliability of the experiment
Give careful consideration to the research design
Give careful consideration to the research question
Htustrative Types of Statistical Tests:
For one independent variable with two levels and one dependent variable:

Two-sample t-test

For more than two levels on one independent variable or two (or more)
independent variables, but one dependent variable:

Analysis of Variance (ANOVA) with Planned or
"post hoc” statistical tests

For one independent variable with two jevels and two dependent vari-
ables:

Hotelling’s one-sample T test

For more than two levels on one independent variable or two (or more)
independent variables, but two dependent variables:

Multivariate Analysis of Variance with ANOV As
and planned or "post hoc” statistical tests

6-17

For the first class of tests, assume that one has only one factor—the
degree of aiding. Moreover, assume that one has only two levels on this
factor, whether the participant worked the problem with or without the expert
system, and one dependent variable (i.e., performance MOE). We can use a
paired (or two-sample) t-test to assess whether the difference in the average
performance levels obtained in the two conditions is significantly different.
If we have more than two levels on this factor, or more than one factor, then
we should use an Analysis of Variance (ANOVA) test instead of multiple t-tests
in order to appropriately control for finding differences between our condi-
tions by chance. The ANOVA should be accompanied by either “planned®” or "post
hoc" statistical tests of the (average) perfurmance levels obtained in the
different conditions depending on wliether the observed differences were

hypothesized or not prior to conducting the experiment.

There are, of course, many situations where there are multiple, not just
one, dependent variables of interest. The second class of statistical tests
deals with this case. Again, consider the case where we have only one factor,
degree of support, and two levels on it. To quote O'Keefe et al. (1987, p.
87), "While & paired t-test is appropriate when systems produce a single final
result, simultaneously applying a paired t-test to a number of final results
is inappropriate since we can expect the final results to be correlated ...

In such cases, Hotelling’s one-sample T? test should be used." In the case
where there are more than two levels on the factor or multiple factors, then
one should use a multivariate analysis of variance (MANOVA). If the MANOVA
shows a significant difference between experimental conditions, then separate
ANOVAS and planned and post hoc comparison tests can be performed to statisti-

cally examine the data.

External V d

In addition to internal validity, construct validity, and statistical
conclusion validity, one also needs to consider external validity. To quote
Campbell and Stanley (1966, p. 5), "External validity asks the question of
generalizability: To what populations, settings, treatment variables, and
measurement variables can this effect be generalized?" [italics theirsj.

Within the context of most expert system tests and evaluations, external

6-18

validity deals with the extent to which the results obtained in an experiment
conducted in a simulated (laboratory) setting will generalize to operational

environments.

As pointed out in Chapter 1, one of the most fundamental dimensions over
which test settings can vary is thelr degree of fidelity to the target
setting. The simulated environment, the simulated decision-making organi-
zation, and even the simulated user can range between being only superficially
accurate to being accurate in great detail. By itself, high fidelity is
desirable in any evaluation setting, but it is expensive. Besides increased
dollar costs and evaluation time, fidelity introduces an additional cost in
terms of loss of experimenter control as one moves from the laboratory to the
operational enviromment. This means that it may be increasingly difficult to
obtain the desired measures in the latter context. Moreover, even with well
implemented quasi-experimental and case study designs, these measures will be
increasingly susceptible to influences that are extraneous to the causal
relations of concern, thereby representing threats to internal and construct
validity. Consequently, a tradeoff is established between fidelity and costs
such that, depending on the objective of the test and evaluation, it may be
desirable to simulate all parts of the target setting prior to moving the

assessment into the operational environment.

As mentioned earlier, experimentation during later software and hardware
development steps is a natural part of the prototyping process. To date, this
experimentation typically focuses on the Expert System/User interface (e.g.,
see Gould and Lewis, 1985) via "human factors evaluations” (Riedel and Pitz,
1986, p.990). While essential to developing a well-liked, usable system, such
experiments typically have low-fidelity User-Expert System/Decision Making
Organization (DMO) and DMO/Environment interfaces. Many expert systems are,
however, used in organizations for the purposes of improving organizational
decision making and, in turn, organizational performance. Consequently,
increasing the fidelity of the organizational and environment interfaces is
essential in generalizing the performance results obtained in the laboratory

to a real-world setting.

6-19

In order to increase the fidelity of the User-Expert System/DMO and
DMO/Environment interfaces, identify the organizational structures, processes,
and communication patterns (both formal and informal) impinging on performing
the task. This includes time pressures, Interruptions, the reward structure,
and even whether the decision maker or a subordinate will operate the expert
system If a task is really performed by a group and not the organizationally
identified, individual decision maker, then, ideally, the group needs to be
represented in the laboratory. For some tasks, such as distribured ones, it
may be possible to simulate the effects of a group by the information present-
ed to the participating decision maker. For other group decision-making
tasks, it may be possible to train members of the research staff to play
certain roles. However, accurate representation of the groups for some tasks
may require the presence of trained personnel performing their parts of the
task in order to assess the value of the expert system. Such a situation will
affect the physical size and structure of the laboratory setting. In addi-
tion, audio- and video-taping capabilities should be used as a data collection
mechanism if the interactions among group weambers are hypothesized to play a

significant role in the successful performance of the group.

In addition, try to make the interaction with the expert system as
representative as possible of that which would occur in the actual environ-
ment. This includes the training in using the expert svstem. Insufficient
training will result in the experiment being an unreliable measure of the
potential value of the expert system; therefore, if an error is made, err on
the side of too much versus too little training. If possible, use objective
measures to demonstrate that the user has been trained to the desired level of
proficiency on the system prior to beginning the experimental session. Also,
make sure that training includes working representative problems. Not only
will users be better trained to participate in the experiment, they will be
better able to subjectively evaluate the expert system’s strengths and

weaknesses.

From both an experimentation and prototyping perspective, the fidelity
of both the organization and environment interfaces should be improved
systematically, as the user interface is typically done now, in order to

provide maximum experimenter control for assessing the characteristics ot each

6-20

that have the greatest impact on expert system performance. Such a perspec-
tive is, however, idealistic, given the time and cost constraints on most
expert system development efforts. A more practical approach fer later in the
development cycle is to develop a gaming simulation that is as representative
as possible of the User-Expert System/Organization and Organiza-
tion/Environment interfaces. [Note: As a result of the requirements analy-
sis, essential features of both interfaces should be kept in mind throughout
the early steps of the development process.] 1In particular, a two-phased

experimentation approach could be implemented.

The first phase could be a relatively straightforward experiment testing
whether or not the expert system significantly improved objective process and
performance MOEs. A positive finding in as representative a "simulated"
setting as possible, particularly over variations in representative problem
scenarios and personnel, would provide the empirical results necessary for
attempting to validate the expert system in its target secting. A negative
finding would lead to the second phase, which would be experimentation
oriented to ascertaining (a) why performance was not significantly better with
the expert system, if that could not be assessed during the Phase 1 experi-
ment, and (b) whether modifications to the system result in improved perfor-
mance. The second phase might also include modifications to asypects of the
organization that are hypothesized to affect performance with the expert
system. More generally, the goal of the second phase of experimental testing
is to better assess the factors that are affecting expert system performance
and attempt to rectify them in as representative an experimental setting as
pessible before transferring the system into its operational (or operational

test) environment.

Field Experiments

Once the expert system has demonstrated superior performance in a
representative, laboratory setting, it is ready for an experiment in the
actual target setting. Although more difficult to implement, "field ex-
periments” alsoc need to control for all threats to validity. For example,
regarding internal validity, organizational units (e.g., divisions/sections in

a large company or governmental agency) would be randomly assigned to the

6-21

“with expert system" and "without expert system" conditions, and their
performance measured after it has stabilized. The unit of analysis is the
performance of the organizational unit; consequently, a large enough sample of

units would be required for performing statistical tests.

Regarding construct validity, attention must be directed toward tightly
measuring the process and performance variables of interest and controlling
other variables that might be confounded with them. If we have some ideas of
what these variables (or rival hypotheses) may be, we want to take steps to
either eliminate their potential impact on the study, systematically incor-
porate them into our experimental design, or measure them so that we can
perform a "post hoc" assessment. If possible, a "placebo" condition would be

included too.

Regarding statistical conclusion validity, we want to have as high a
level of statistical power as possible. This statement implies serious
consideration of our research design, the questions we are addressing (includ-
ing effect size), and the relative importance of Type I and Type II errors.
The issue of external validity does not have to be addressed if, and only if,
the field test includes all aspects of the population to which we want to

generalize our results.

CASE STUDIES AND QUASI-EXPERIMENTS

The sample size and randomization requirements of true experiments are
not possible in many organizations. Case studies and quasi-experiments should
be used in such situations. To quote Campbell and Stanley (1966, p. 34),
"There are many social settings in which the research person can introduce
something like experimental design into his scheduling of data collection
procedures (e.g., the when and to whom of measurement), even though he lacks
the full control over the scheduling of experimental stimuli (the when and teo
whom of exposure and the ability to randomize exposures) which make a true
experiment possible. Collectively, such situations can be regarded as quasi-

experimental designs."

6-22

All four types of validity need to be considered for these designs just
as for experiments. The reduced control of not being able to perform field
expariments makes empirical evaluations in the actual setting more difficult,
but it does not eliminate our ability to perform them consistent with the
tenets of the scientific method. "[Tlhe core of the scientific methad is not
experimentation per se, but rather the strategy connoted by the phrase

{evaluating] ‘plausible rival hypotheses’" (Campbell, 1984, p. 7).

There are different types of quasi-experimental designs. Campbell and
Stanley (1966) identify ten types, not counting variations of these themes.
The three quasi-experimental designs considered below are: (a) time-series
designs, where the organizational unit is measured for a period of time before
and after the treatment (e.g., expert system implementation); (b) multiple
time-series designs using a control group; and (c) nonequivalent control group
designs that obtain pretest and posttest measures at only one time for a

nonrandomized sample of treatment and control groups.

Quasi-experimental designs represent a substantial advance over the
"pre-experimental designs" (Campbell and Stanley, 1966) found in many "field
studies” (Sharda et al., 1988). We will first overview the three pre-experi-
mental designs and then discuss how case study and quasi-experimental designs

represent improvements over them.

Pre-Experimental Designs

Campbell and Stanley (1966, p. 6) called the first pre-experimental
design "the one-shot case study.” Cook and Campbell (1979, p. 96) later
renam2d this "the one-group posttest-only study" in order that it not be
confused with appropriately conducted case study designs. In this approach,
one organizational unit is given the treatment (e.g., the expert system) and
performance is subsequently measured. There is no pretesting and there is no
control group; instead, a "... single instance is implicitly compared with
other events casually observed and remembered. The inferences are based upon
general expectations of what the [performance] data would have been had the

[treatment] not occurred, etc.” (p. 6).

6-23

The one-group posttest-only study violates all four types of validity.
First, there is no control for (or even consideration of) internal validity
threats due to how participants are selected or what may have also occurred
during the treatment stage, either through historical events or other changes
to the participants or their organizational context. Second, nothing is
measured so it is impossible to determine what extraneous factors may have
been confounded with the treatment, or to assess their effects. Third, there
is no explicit measurement of performance variables or comparison with another
group; consequently it is impossible to assess statistical conclusion validi-
ty. and, fourth, it provides no justified basis for predicting the effect of

the treatment on another group of participants.

The second pre-experimental design is the one-group pretest-posttest
design, where implementation of the expert system represents the treatment.
The problem with this design is that it does not control for the effect of
other plausible hypotheses that could have improved performance between the
pretest and the posttest. Three types of plausible rival hypotheses im-
mediately come to mind. First, there may have been "other events" that
occurred between the two tests that can explain the results—that is, history.
Second, if the selected group represented extreme performers (e.g., the very
best or very worst), then one would expect pretest-posttest differences to be
affected by statistical regression to the mean. And, third, the design does
not rule out other effects that are confounded with the treatment, such as the

"special attention" that goes with the implementation of the expert system.

The third pre-experimental design is the static group design, also
called the "posttest-only design with nonequivalent groups" (Cook and Camp-
bell, 1979, p. 98), where the subsequent performance of the group receiving
the treatment is compared with that of a group without the treatment. Since
there Is no pretest or randomization with this design, there is no "... formal
means of certifying that the groups would have been equivalent had it not been
for the treatment [e.g., the expert system]|" (Campbell and Stanley, 1966, p.
12). Or, to be more blunt, "The plausibility of selection differences in
research with nonequivalent groups usually renders the design uninterpretable”
(Cook and Campbell, 1979, p. 98). The last two pre-experimental designs are

somewhat insidious in the sense that, on the surface, they represent “"pretest:

6-24

pesttest control group" and "posttest-only control group"” designs, respective-
ly, which are true experimental designs because subjects are randomly assigned

to at least two conditions-—the treatment and the control groups.

Explicit case study and quasi-experimental designs will now be con-
sidered in relation to the three pre-experimental designs considered above.
In particular, case study designs will be juxtaposed to the one-group post-
test-only design; time-series designs will be juxtaposed to the one-group
pretest-posttest design; and nonequivalent control group designs will be
juxtaposed to the posttest-only design with nonequivalent control groups. The
reader should keep in mind that we are sampling only from a wide variety of
quasi-experimental designs. Although they are considered together here, case
study and quasi-experimental designs represent different evaluation approach-

es.

Al opriat a Studies

Yin (1984, p. 23) has defined a case study as "an empirical inquiry that
investigates a contemporary phenomenon within its real-life context; when the
boundaries between phenomenon and context are not clearly evident; and which
multiple sources of evidence are used."” This definition nicely fits the
evaluation of an expert system or, more broadly, any form of information
technology (or intervention) in an operational environment. As Lee (1989, p.
33) points out, "There is a strong case-study tradition in the academic field
of management information systems ... [Our concern is] to clarify the method-

ological basis upon which to conduct case studies.”

We first consider construct validity, which is the attempt to ensure
that one is measuring the concept that one wants to measure. To quote Yin
(1984, p. 37), "To meet the test of construct validity, an investigator must
be sure to cover two steps: (1) select the specific types of changes that are
to be studied (in relation to the original objectives of the study) and (2)
demonstrate that the selected measures of these changes do indeed reflect the
specific types of change that have been selected” [italics ours]. The reason
for the italics is that the lack of experimenter control in case study

research makes it much more difficult than in an experiment to minimize the

6-25

potential confounding of the treatment of interest (e.g., the expert system)

with other variables (e.g., special attention).

Moreover, lack of control makes it more difficult to be sure one {s
measuring that which one wants to measure. For example, in a laboratory
experiment it might be quite easy to measure decision quality because one has
a ground-truth solution to the problem scenario. In contrast, in an opera-
tional setting, it might be quite difficult to define decision quality because
it might be in the eye of the beholder. 1In such settings it is necessary to
have multiple experts, preferably ones who are not part of the organizationm,
rate decision quality and then use either a consensus position or an average
rating to resolve any differences of opinion. In an effort to make the
experts blind to the solution generated by the expert system, one should
attempt to state the problem generally and to embed the actual solution in a

range of hypothetical solutjons.

The principal approach to solving the threat to construct validity in
case study research is two-fold. First, the constructs need to be reliably
measured. Again, the essence of reliability is replication—that is, the
position that if another researcher did the same study a second time, one
would obtain the same results. To quote Yin (1984, p. 40), "Note that the
emphasis is on doing the same case over again, not on ‘replicating’ the
results by doing another case study ... One prerequisite for allowing this
other investigator to repeat an earlier case study is the need to document the
procedures followed in the earlier case. Without such documentation, even you
could not try to repeat your own work (which is another way of dealing with
reliability) ... The general way of approaching the reliability problem is to
make as many steps as possible as operational as possible, and to conduct

research as if someone were always looking over your shoulder" [{talics hisj.

Second, case study research should use multiple sources of evidence to
measure the independent variable constructs. More generally, there should be
a high correlation among different pieces of evidence all supposedly measuring
the same construct. Conversely, there should be no correlation among pieces
of evidence measuring different independent variable constructs. This is the

concept of convergent and discriminant validation introduced by Campbell and

6-26

Fiske (1959). Quite simply, "lLie idea is that measures of the same thing
should be highly related,; meacures of different things should not be. For
example, if the implementation of an expert system were preceded by effective
training, one would expect that to be reflected in & number of ways, such as
by (1) behavioral measures of proficiency in using the expert system prior to
testing (or during implementation), and (2) subjective responses to interview
questions. That is, different measures of "training proficiency" would all
converge on the same result. . reover, there should be no confounding wich
other independent variable constructs. Ior example, there should be no
systematic relation between measures of training proficiency and crganization-

al size or management attention if there is high construct validity.

It is important to emphasize that causal inference has not yet been
considered; construct validity addresses only whether one is actually measur-
ing the variables une wants to measure, not whether there are causal relations
between these variables. In order to do the latter, we need to consider
statistical conclusion validity and internal validity. The former is typical-
ly not possible in case study research because as Lee (1989, p. 35) points
out, "... the study of a single case commonly yields more varisbles than data
points—a situation that renders inapplicable the statistical ¢ :ntrols of
statistical experiments." Moreover, many case studies generate only qualita-
tive, not quantitative data. Consequently, there is no way to perform a

statistical test of the reasonableness of one’'s causal inferences.

Although one may not be able to perform statistical tests to determine
statistical conclusion validity, one can still address the internal valildity
of case study research. At a more conceptual level, Lee (1989, p. 40) has
pointed out that ",.. it must first .= emphasized that muathematics is a subset
of formal logic, not vice versa. Logical deductions do not require mathemat-
ics. An MIS case study that performs its deductions with verbal p.opositions
(i.e., qualitative analysis) therefore only deprives itself of the convenience
of the ru'’es of algebra; it does not deprive itself of the rules of formal
legic, to which it may therefore still turn when carrying out the task of

makiug controlled deductions" [italics his].

6-27

Yin (1984, p. 105) has emphasized the use of three modes of data
analysis for case study research: pattern matching, explanation building, and
time-series analysis. [Note: "Time-series analysis” will be considered as a
quasi-experimental design later in this chapter.] In its strongest form,
pattern matching "... requires the development of rival theoretical proposi-
tions articulated in cpevational terms. The important characteristic of tlese
rival explanations is that each involves a pattern of independent variables
that is mutually exclunive: If one explanation is t¢ be valid, the others
cannot be. This means that the presence of certain independent variables
(predicted by one explanation) precludes the presence of other independent
variables (predicted by a rival explanation). The independent variables may
involve several or many diffarent types of characteristics or events, each
assessed with different measures and inrtruments.” Indeed, consistent with
the above discussion regarding the use of multiple pieces of evidence for con-
struct validation purpcses, causal inference ir enhanced if one uses different
types of measures to support one hypothesis versus its plausible rivals. The
MIS case study by Markus (1983) is an excellent example of the use oi this

mode of analysis.

In contrast to pattern matching, explanaticn building r-:lies on itera-
tion, where an initial set of propositions is compared with the obtajined data,
and subsequently revised and tested. The final explanation is seldom stipu-
lated at the start of the study. Rather, it develops as the data are examined
from a different perspective, one that =merges from the analysis itself.
Obviously, such an approach can be dangerous if it relies on building a myopic
chain of evidence focusing on support for this "new" hypothesis. Falsifica-
tion, not confirmation, must be the goal; consequentl,, rival plausible
hypotheses must be pitted against one another. The case studies by Bourgeois
and Eisenhardt (1988) and Kaplan and Duchon (1988) are excellent examples of

thls second mode of analysis.

It should be noted that Loth modes of data analysis require that plausi-
ble rival hypotheses be known so that they can be evaluated against the data.
This is, as we puinted out befoiec, a difficult task. Moreover, it is a

weakness compared to true experiments where randomization can be used tn

control for the spurious effects of many (but not all) unknown hypotheses.

Nevertheless, they are powerful modes of deduction,

Lastly, we consider the external validity of case study research. As
was discussed earlier in this chapter, external validity refers to the
generalizability of the obtained findings. Case studies have been routinely
criticized on external validity grounds for, the argument goes, how can one
generalize from a sample size of one? Yet, the same criticism can be leveled
at a researcher attempting to generalize from a single experiment, for it
would be just as precarious. Experiments and case studies are no different in
terms of their external validity requirements. Both depend on theoretical
propositions being tested and not falsified under various empirical conditions
in order to assess how generalizable they are. The more conditions for which
the predictions of a theory hold, whether these theoretical propositions are
tested by experiments or case studies, the greater the external validity of
the theory. The same holds for an expert system or any form of information
technology. The broader the types of operational conditions for which the
expert system enhances performance, the more confidence one has in its ability

to enhance performance in subsequent settings.
Time-Series Designs

We now turn to consider time-series designs, the first of the two quasi-
experimental designs considered in this chapter. As you will remember, time-
series designs were juxtaposed to the one-group pretest-posttest design where,
in our case, implementation of the expert system represents the treatment.

The problem with this pre-experimental design is that it does not in any way
control for the effect of other plausible hypotheses that could have improved

performance between the pretest and the posttest.

The "simple interrupted time-series design” (Cook and Campbell, 1979, p.
209) uses the group itself as a partial control for alternative hypotheses by
measuring the performance of the group repeatedly both before and after the
treatment intervention. For example, if repeated measurements had shown that
a group's performance was increasing linearly by 3 points on every observa-

tion, then it would be inappropriate to conclude that the expert system had a

6-29

positive affect on performance because the posttest was 3 points above the .
pretest., Similarly, if performance is known to vary with known cycles or

actions, such as the time of year or the change in adwinistrations, it would

be inappropriate to assume that the expert system had significantly affected

group performance without first accounting for these known causes of perfor-

mance regularities.

The construct validity of a simple interrupted time-series design again
depends on the extent to which one is measuring what one wants to measure.
Like case studies, one should use multiple pieces of evidence to measure other
variables that might “.e confounded with the expert system’s implementation, as
well as all dependent variables. Again, the focus should be on the convergent
and discriminant validity of these measures; measures supposedly measuring the
same comstruct should be correlated, while those measuring different con-
structs should not. Moreover, as Cook and Campbell (1979, p. 231) point out,
"... data needs close scrutiny. Operational definitions need to be critically
examined, and one should not assume that the construct label applied to a
particular measure is necessarily a good fit. Inquiries have to be made about
shifts in definition over the time the record is kept; where possible, the .
nature of the shift needs documenting." Also, special attention must be given
to the reliability of the measures. Unreliability adds error into the
measurement process, thereby reducing one's ability to find differences

between the pretest and posttest observations.

The issues regarding Type I and Type II errors and statistical power
that were discussed regarding the statistical conclusion validity of ex-
perirents are just as appropriate to quasi-experiments. For the simpie
interrupted time-series, this means that one wants to be able to make a
reasonable statement as to whether the posttest observations represent a
different pattern from the pretest ones. As the above "3-point example"
illustrates, one should not use traditional statistical tests to assess mean
differences. And, as McCain and McCleary (1979, p. 234) point out in their
review paper of different statistical methods for performing time-series
analyses, one should not use ordinary least squares (OLS) regression. "OLS
regression requires an assumption that residuals, or error terms asscciated

with each time-series observation, be independent. When naturally occurring ‘

6-30

events or behavior are cbserved repeatedly over time, however, events closer
to each other in time tend to be more correlated with each other than with
events further removed in time. Since time is the independent variable of an
OLS time-series regression, it follows that the error terms of consecutive
observations are usually correlated ... [Consequently,} the estimates of
standard deviations (and hence, of significance tests) are biased" [italics
theirs].

There are numerous texts on time-series analysis and computer programs
to help one perform it; consequently, we will not go over the different
methods here. Indeed, consistent with our earlier discussion of statistical
tests for experimental designs, we are hesitant to discuss time-series
analysis methods in any detail because adequate discussion of the topic takes
considerably more space than is available here. Instead, consistent with the
detailed presentation by McCain and McCleary (1979), we will here only
enumerate the four basic steps in the analysis for a simple interrupted time-

series design.

The first step is called "identification."” The goal i{s to identify the
systematic component in the data that is not dependent on the treatment ({.e.,
the expert system). The systematic component is responsible for the correla-
tion (called "autocorrelation”) in the data independent of the treatment.

When the auteocorrelation structure is known, it can be explicitly incorporated
into the model so that one can calculate unbiased estimates of the standard
deviations and, thereby, statistically test the treatment’s effect on the

residuals.

The second step is "estimation;" that is, once & likely model has been
identified, its parameters are estimated with programs using appropriate
nonlinear equations. The third step is "diagnosis.” The autocorrelation and
partial autocorrelation of the residual terms are examined to diagnosis the
adequacy of the estimation model. The goal is to conclude that the residuals
are unbiased, essentially behaving as white noise. If they are, then one has
an adequate model for predicting regularities in the data, independent of the
treatment. If they don’t, then one repeats the process of identification,

estimation, and diagnosis until an acceptable model is found.

6-31

When one has a predictive model with unbiased residuals, one can proceed
to "intervention hypothesis testing." In this step, one adds an intervention
component to the model. The intervcntion component represents the hypothe-
sized effect of the treatment to the model; it is represented ty = "transfer
function.” For example, if the hypothesized effect is that of an abrupt,
constant change, it would be represented by a step function. Gradual,
constant change can be represented by a linear function. "If the intervention
component increases the model'’s predictability, the parameters of the inter-
vention component will be statistically significant ... Expressing the
hypothesis testing component of time series in this way illustrates that the
statistical analysis does not by itself test ‘cause.’ It asks only whether a
statistically significant change in the series takes place at a specified
point in the series. No explanations for the change are evaluated™ (McCain
and McCleary, 1979, p. 262).

When all is said and done, the simple interrupted time series is a weak
design because of a number of threats to its internal validity, not statisti-
cal conclusion validity. The mest obvicous and significant threat to internal
validity is that some simultaneous event ot.er than the treatment caused a
change in performance. Cook and Campbell (1979, p. 211) have referred to this
as a "main effect of history." Another internal validity threat is "instru-
mentation." As they point out, administrative changes are sometimes accompa-
nied by changes in record keeping. Since it is not uncommon for the implemen-
tation of an expert systems to cause administrative changes as well, changes
in record keeping is a plausible rival hypothesis. And, third, "selection"
could be an internal validity threat if the implementation of the expert
system were also accompanied by a shift in the composition of the test group.
(Note: It is assumed here that the threat to internal validity posed by
seasonal or cyclical impacts on performance have been controlled for through

the time-series analysis; otherwise, they pose a threat to internal validity.)

In an effort to control for these threats to internal validity, Campbell
and Stanley (1966) advocated the addition of a control group to the time-
series design. The control group should be comparable to the treatment group
but, as Ccok and Campbell (1979) demonstrated, attempting to match thz group:.

at the point of the intervention can be difficult and sometimes cause spuricus

6-32

effects. What is most important is that the control group be similar to the

treatment group in the sense that it can be subjected to the same historical,
instrumentation, and selection effects. Consequently, a significant shift in
the posttest versus pretest observations of the treatment group, but not the

control group, would disconfirm the above rival hypotheses compared to the

hypothesized treatment effect.

The threats to external validity for the simple interrupted time-series
design still exist when a control group is added to the design. Again, this
is because external validity has to do with the generalizability of tue
results to settings and groups different from those in the test. The broader
the range of settings for which the results hold, the better the time series’

(or experiment’s or case study’s) external validity.

Nonequivale Control Group Design

This quasi-experimental design was juxtaposed to the posttest-only
design with nonequivalent groups. The latter is a pre-experimental design
because the treatment and control groups are compared only on a posttest. The
nonequivalent control group design adds a pretest measure for both groups in
an effort to control for factors, other than the treatment, that might affect

performance.

The nonequivalent control group design is similar to the time-series
design with a control group, but it utilizes only one pretest and one posttest
observation, a situation not uncommon in operational environments. As a
result, however, it is not as effective at controlling for threats to internal
validity as the “time-series with a control group." Moreover, it requires
that a number of treatment and control groups be sampled because it uses only
one pretest and posttest score per group. Although different types of
measurements (i.e., multiple pieces of evidence) can be used to obtain this
pretest and posttest score, one has a significantly different type of situa-
tion from that occurring in a time-series design where there are numerous,
repeated pretest and posttest scores (using the same measurement instruments)
over time. Consequently, nonequivalent control group designs use different

statistical tests for dealing with statistical conclusion validity.

6-33

We will not consider the construct and external validity issues inherent
in nonequivalent control group designs, for they are similar to those for
experiments, case studies, and time-series designs considered above. Rather,

we consider statistical conclusion validity and internal validity, in turn.

When considering the statistical conclusion validity of nonequivalent
control group designs, it should be remembered that randomization is not
employed. The word "nonequivalent" is used to convey the fact that one can
not be sure that the populations from which the selected groups are sampled
are actually the same on all pretest measures, even if there is no difference
in the obtained pretest measures for the treatment and control groups. To
quote Reichardt (1979, p. 148), "The label ‘equivalent’ does not imply that
two groups would have identical mean scores on any variables measured at the
pretest. Rather, it indicates that if the random assignment procedure were
repeated over and over again so that the sample sizes in the two groups became
infinitely large, the two groups would then have identical means (or medians,
variances, or the like) on all variables measured at the pretest. Thus our
use of the term equivalent denotes an equivalence of expected (population)
vaiues and not an equivalence of cibtained (sample) values. We use the term
nonequivalent in a similar fashion; assuming that if the same nonrandom
selection process were repeated over and over again, the two treatment groups
would differ in a number of ways" [italics his]. The bottom line is that
"[{w]jithout randomization, selection differences between the groups are

inevitably introduced at the start of the [studyi" (p. 197).

Reichardt (1979) reviews three principle analysis methods for controll-
ing for selection differences measured by the pretest. The first method {is
analysis of covariance (ANCOVA). It examines the difference in the groups'’
posttest scores as a function of the pretest scores. A significant effect
when pretest differences are statistically controlled for suggests that
improved performance is a function of the treatment and not the groups’
starting point. The second method is analysis of variance (ANOVA) with
blocking or matching. Block membership (e.g., high versus low pretest score)
is entered into the ANOVA so that one can test the effect of the pretest
level, the treatment versus control group condition, and interactions betwcen

the two on the posttest scores. The third method is an ANOVA with gain

6-34

scores. That is, one performs an ANOVA on the experimental conditions, but
now using the change in performance between the pretest and posttest as the

dependent variable.

In his review, Reichardt (1979) points out that all three methods have
threats to statistical conclusion validity. For example, random measurement
error in the pretest can bias the estimate of the regression slope (used to
estimate the pretest-posttest dependency) in the ANCOVA and, thereby, bilas the
estimate of a treatment effect. In the case of an ANOVA with matching, it is
often difficult to match treatment and control representatives in actual
settings because these groups tend to differ in their extreme values. For
example, the treatment group may have a smaller number of high pretest scores.
In an effort to "match" the groups, one might drop representatives with
extreme values and, potentially, instill a systematic bias in the estimated
treatment effect. And the statistical power of the ANOVA using gain scores,
as compared to the ANCOVA or ANOVA with matching, depends heavily upon the
particular circumstances of the research because the former tests whether the
mean pretest-posttest change is significantly different between groups, not
whether the mean posttest scores are significantly different. "The obvious
conclusion is that none of the above techniques or any others should be
blindly or thoughtlessly used to analyze data from nonequivalent group designs

It must be remembered that a statistical technique specifies a model for
the data ... Thus the statistical model must be carefully tailored tao fit the

unique characteristics and demands of the data at hand" (p. 186).

We now turn to consider internal validity. Specifically, Cook and
Campbell (1979) point out that the nonequivalent control group design controls
for all but four threats to internal validity. The threats are all a function
of the selection bias built into the design by the lack of randomization.
First, the design does not control for the effects of a "selection-maturation®
bias because the respondents in one group might naturally change over time
irrespective of the treatment. Experience is one way this might happen that
is of particular importance when testing and evaluating expert systems. For
example, let’s assume that an expert system was fielded for use by operational
personnel with less experience than experts, which were selected as the

control. 1In this case, one would expect the novice group to improve in

6-35

performance over time as it gained experience (i.e., on the job training), .
irrespective of the hypothesized advantages of the expert system. Consequent-

ly, another group of novices, but now not receiving the expert system, would

be required to determine whether improved performance was due to thes ~xpert

system or experience.

The second threat is "instrumentation." 4s Cook and Campbell (1979, p.
105) point out, "It is not clear with many scales that the intervals are
equal, and change is often easier to detect at some points uu a scale than
others. Scaling problems are presumably more acute the greater the non-
equivalence of the experimental groups and the farther apart they are on the
scale, especially if any of the group means approaches one end of the scale
where ceiling or floor effects are likely." Such ceiling effects are quite
plausible for the control group of experts considered in the example above,
As a result, their performance may, simply by the nature of the measurement
scale, be constrained; consequently, any positive improvement by the treatment
group may, by comparison, seem significant. Conversely, if the experts were a
treatment group receiving the expert cystem, their scores may not reflect
actual performance enhancements due to the artificizl constraints of the .

measurement scale.

The third threat to the internal validity of nonequivalent control group
designs is "statistical regression" to the mean. That is, if groups are
selected on the basis of extreme scores on a pretest, their scores can be
expected to move back (or regress) to the average (i.e., mean) simply because
of measurement error in the pretest. This might occur in the above example if
members of the novice contrel (i.e., no expert system) group were selected on
the basis of poorest performance on the pretest. Their performance on the
posttest would improve due to regression to the mean, irrespective of whatever

other gains were achieved due to experience.

Lastly, the fourth threat to internal validity is "local history," which
represents an interaction of selection and history. This accurs when either
the treatment or control group is exposed to events other than the treatment
that might affect its performance. In the above example, this might occur it

the expert and novice groups worked different shifts, worked {n different

6-36

parts of the country (or world), were subjected to systematic differences in

administrative procedures or supervision, etc.

With the discussion focusing on threats to internal validity, the reader
should not lose sight of the fact that the nonequivalent control group design
is a reasonably good one. It is certainly far superior to all three pre-

experimental designs.

CHAPTER SUMMARY

This chapter has reviewed the use of experiments, appropriate case study
designs, and two types of quasi-experimental designs for performing empirical
tests and evaluations of expert system technology. The definitions for these
empirical evaluation methods are presented in Table 6-4 for summary purposes.

The discussion has been at a general level.

Table 6-4: Definitions of Empirical Evaluation Methods

Experiment (factorial):

One or more factors are systematically varied as the independent vari-
able(s); participants (or organizational units) are randomly assigned to
the independent variable conditions; and the dependent variables are
quantitative (and preferably, for our purposes, objective) measures of
system performance.

Case Studies:

An empirical inquiry investigating a contemporary phenomenon within its
real-life context; using multiple sources of evidence; and striving to
explain how or why something happened by logically linking the data to
the propasitions supporting one rival hypothesis versus others.

Quasi-Experimental Designs:

Settings that permit some control over the scheduling of data collection
even though onc does not have complete control over the scheduling of
experimental stimuli as provided by randomization. (Simple interrupted
time-series designs, the time-series design with a control group, and the
nonequivalent control group design were considered.)

6-37

Although some of the specifics of implementing these different empirical .
test and evaluation methods have been considered, there has been no attempt to
cover all the details that would be found in experimental design and statisti:
cal analysis texts. Rather, the goal was to sensitize the reader to the
different issues that should be considered when attempting to empirically
demonstrate the performance benefits of an expert system. For that reason,
the four types of validity, which are summarized in Table 6-5, were used as
criteria for considering each of the different approaches. In particular, by
focusing on the threats to these different types of validity, it iz hoped that
readers will be able to better formulate research designs (i.e., strategies)
for assessing the performance impact of an expert system. Or, to put it more
bluntly, without well formulated and conducted empirical evaluations, one has
no way of knowing whether the expért system helps, hinders, or has no effect

on performance.
Table 6-5: Definitions of Reliability and Validity

Reliability:

Demonstrating that the operations of a study can be repeated with the .
same results.

Validity:

Demonstrating that the results of a study are well grounded. The differ-
ent types of validity:

Intemal Validity - Establishing a causal relationship,
whereby certain conditions are shown to lead to other
conditions, as distinguished from spurious relationships.

Construct Validity - Having good operational measures for
the concepts being measured.

Statistical Conclusion Validity - Ensuring that the study is
sensitive enough to permit reasonable statements regard-
ing the covariation between independent and dependent
variables, and using appropriate statistical tests of this
covariation.

Extemal Validity - The extent to which the results of the
study can be generalized to the populations, settings,
treatment variables, and measurement variables of ulti-

mate interest. .

6-38

In closing this chapter, we again note the overriding perspective
represented by the SHOR paradigm that has guided this presentation. Specifi-
cally, we see the evaluator’'s job as helping members of the sponsoring team
decide whether the expert system is an effective option for dealing with
hypotheses regarding the current and/or future problem environment with which
the organization will be dealing. Remember, the initial decision to build the
expert system was nothing more than a hypothesis that the expert system will
improve the organization's decision making and, in turn, its performance.
Evaluators can use empirical test and evaluation methods to not only help
members of the sponsoring team as<cess the adequacy of this hypothesis, but
also identify what corrective actions to take if the expert system does not
significantly improve performance. This latter point is extremely important
from a prototyping perspective, for empirical feedback provides critical
guidance for improving the expert system. Correspondingly, the failure to
identify whether or not the expert system actually improved performance

eliminates the possibility of improving a deficient system.

6-39

CHAPTER 7:

PULLING IT TOGETHER

The framework described in Chapter 3, along with the detailed technical,
empirical, and subjective method described in Chapters 3 through 6, provides a
comprehensive way to guide the testing of expert systems. A key feature of
the approach, however, is the incorporation of judgments regarding the
relative importance of attributes. This forms the basis to guide the testing
by directing testing activities to those areas that are regarded as most
important and by using testing resources most intensely in the most important
areas. This chapter explains the considerations that go into these judgments
and offers suggestions to the tester who is faced with the task of determining
what to test and how to aggregate the results of the tests. This chapter,
unlike the previous ones, contains many opinions of the authors that have not
been subjected to extensive research or application. These opinions are
offered in the spirit of useful suggestions rather than definitive fact. The
further use of the methods described in this handbook will contribute refine-

ments to these suggestions.

A key aspect in "pulling it all together" is a four-step approach to
using the framework in Figure 7-1 (which is a reproduction of Figure 3-9).
First, establish the relative importance of the different major areas (the top
level in the framework: knowledge base, inference engine, "service," perfor-
wance, and usability), then sub-areas, and then attributes. This information
is then refined into weights. Second, examine each attribute, determine its
measure, and determine how to collect that information. Third, collect that
information about the system being tested. Fourth, process the information
through the MAUA. Fifth, evaluate the results by comparisons between actual

results and the desired or required results,

WEIGHTING DIFFERENT PARTS OF THE HIERARCHY

A useful way to establish weights in the hierarchy of Figure 7-1 {s to
start at the top and determine the relative importance of each major area:
knowledge base, inference engine, "service," performance, and usability. The

answer might be that usability and knowledge base are equally most

7-1

sw3sAg Madx3 Gunenjeas pue Bunsay) o) yJJomaweld NYW Vv :1-2 aunbid

AN LNO/INGN! @

INIHOS
NOILYINISIHIIH
40 ALNEYLIdIOIY @
IHNIONYLS S1INsS3d
1S3UNA300YHd 40 ALNIBYI4300V @
TWNOLLYZINYOHO NOILOVHIINI
40 10VdWI @ W3 LSAS JH3dX3 INIHOVIW/NYWN
ONINIVH L/STUNS 40 ADNIHVISNYHL @ JO AHUEVLIdIOOV @ Qasn S3uNivid @
QYO DIHOMWITALS 3OVH INCILVYINISIud ISNIOQ ISV @ 3SN JO HINNVW @
NHOM 20 1IVdW @ H) ADYNOIAY @ FONIAIINOD @ FSN 4O INJIX4 @
TOVanI NOILVOIiddv
7 NOLLVZINVOHO _.l NOLVNYIIX3 | 30 34098 [nowwo | | 3vevauaseo !
_ _ _ |
o~
3svg)
FDAITMON) 30 ALINBVIHIGONW - ™~
SINIWIHIND3IY TUAS - JOHNOS 40 ADVNOIAAY -
NOLLVINIWNDOQ - ALMEV.I4300V SON3 Gv3a -
SININIHIND3Y viva - NONHVINISIHIIH IDATTMONA - NOISTITONOD 3T18VHOVIBNR -
SLVNHO - SIINY 40 ADVHNOOY - S3INIVA 3LNAIHLLY TVOITH -
NOULVHOIINI W3LSAS @ S1IV4 40 AOVUNODY - SINTVA
SHOHHI INDLNO/LNGNI - AJVHNOOV 3ALDIQ3Hd @ JINSIHLIY QIONTHIIIUNO -
ONITANVH NOILLYAVHD3Q - SNOLLY. U SSAN3ILITINOD WID0T @
ONIdWNr/3sSN 34NEV3S - FOCITONM GIIHINIAL - S3IINY BYNIBIO -
SNOSV3H 40 /A LWNO @ {3UVYMOBYH) ALUBYIVYD - J383A00 ATIL3TINOD SING ONLLDITANOD -
SHIMSNY 3C ALTVNO @ svig @ (YVMOYYH) ALTHEVII3Y - NOISNTINOD/NOILYIIddY - S3TNY Q3WNsAns -
MHSVL HSITdWODOYV OL 3L @ ADVHNOOV @ SININIBINOIY FOVdS - SINGNI Q3HIS30 TV - S3INY INVONNC3Y -
INIL ISNOJSIY @ J334S @ IWNLLNNY - SSINILITINCD TYNOILONNS @ ADNILSISNOD VD01 @
INNL SN-L3S -
} ADVSN HIALNINOD @
[inawoanr | ﬁﬁégggg ALFIGY1HOd - [ivawoo | [zunionuss |
_ 4 NOIS3Q - _ ~
_ W31SAS HALNIWOD @ —
adigvsn | { 3oNvWHOIu3d | [3omu3s. | [3wion330N3u3aNi| | 3sve 3903 MO

[1] _ |

7IVYH3AO0

important, followed by performance which is half as important as usability,
and service which is half as important as performance. Inference engine might
be regarded as unimportant for testing because the developer’s testing is
considered sufficient assurance of the quality of the inference engine. These

judgments yield the following set of weights:

Normalized Weight

Attribute We t {rounded)
Knowledge base 1 164
Inference engine 0 0
Service .25 .091
Performance .5 .182
Usability 1 _,364

Total 2.75 1.00

The numbers in the column headed "Weight" are assigned arbitrarily to
agree with the judgments of relative importance. The normalized weights are
calculated by dividing each weight by the sum of weights. Normali.:d weights
put the assessments on a consistent scale. This process is repeated at each
level in the hierarchy. For example, within knowledge base, an assessment is
made between structure and content. Within structure, an assessment Is made
between logical consistency and logical completeness. Within logical com-
pleteness, an assessment is made amoi1 g the four factors. When this process is
complete, sufficient information is available to cal-ulate the normalized
cumulative weights used in Equation 3-1. (A detailed 2xample of the method is
presented in Volume 5, the User’s Manual for TESTER C, the computer program

that incorporates the MAU hierarchy.)

These are the mechanics of the weighing system, but where do the
judgments come from? Ideally, this information will be stated in a specifica-
tion of requirements for the expert system. However, the ideal is unlikely to
be achieved. Many expert systems developments fail to produce any documenta-
tion of reguirements, much less a specification of the relative importance of
testing different aspects »f the system. In the absence of a requirements
statement, the program or project manager is the best source of information
about the relative importance of attributes. It is unlikely that the manager
will answer the full set of questions to specify weights for the complete
hierarchy, but it should be possible to elicit tradeoffs at the top level or

two of che hierarchy. The tester may then need to use his own judgments,

7-3

based on whatever information is available to get the rest of the weights.
Fortunately, the top weights are the ones that have the greatest effect on
what actually needs to be done to test the system. For example, high impor-
tance on usability indicates that the tester should try to get human subjects
to use the system in a realistic setting and fill out questionnaires.
Conversely, high importance on knowledge base indicates that extensive static
and dynamic testing of the code may be needed. High importance on perfermance
indicates a need for a good set of test cases. If the program or project
manager i{s unavailable or otherwise unwilling to provide these judgments, then

the program’s developer may have some insights to the tradeoffs.

If no other source of tradeoff information is available, then the tester
must use his or her own judgment. This is a tricky prospect, and it is always
a good idea to generate a tentative set of tradeoffs and then attempt to
confirm or disconfirm those tradeoffs with a more authoritative source. In
any case, the source of tradecff information and its authority should be

stated clearly in any test report.

In the absence of a more authoritative source for tradeoff information,
we offer the following suggestions based on a characterization of the expert
system and its intended use. This guidance is the opinion of the authors and
is not intended to replace more authoritative sources. It is offered as an
aid to testers who would otherwise be unable to continue without tradeoff
information. It i1s also offered as a suggested starting point to inform a

tester prior to his interviewing other sources such as the sponsoring agency.

To use our suggestions, it is first necessary to characterize four
aspects of the expert system: mission eriticality, degree of automation,
expertise of the user, and the degree of distribution of the system. A
mission critical system is one that can affect seriously the health and safety
of people or large amounts of resources. It might be described compactly as a
system whose errors or misuse could result in loss of 1ife or in large dollar
losses. Degree of automation refers to the extent to which the system makes
decisions on its own rather than provides advice to a human operator who makos
the decision. Expertise of the user: Is the user an expert or a novice? 1If
a novice, is the user expected to increase in expertise by using the svstem?

The degree of distrilbution refers to the extent to which the system is

7-4

intended for use outside of the development group. (Notice that these

characteristics are not mutually exclusive.)

Mission Critfcal System

The first characterization is whether the system is mission critical.
If a system is mission critical, then this is an overriding consideration for
testing. For missjion critical systems, it is extremely important to establish
a minimum competency for the expert system to ensure that it will not make
catastrophic errors. Important criteria requiring the greatest testing

attention are:

1. Knowledge Base and Inference Engine. Testing .s needed to ensure
that the expert system will not produce disastrous decisions or
advice.

2. Quality of Answers. Here, testing should establish whether the

answers are an improvement over what would be done in the absence
of an expert system. Performance against ground truth is also
important.

3. Computer System and Speed. If specifications exist, these should
be tested, probably against a pass/fail criterion.

4, Inference Engine. Testing should be aimed at determining that a
disaster will not be caused by a faulty inference engine.

Other characteristics, including usability, are not as important for
testing. If an expert system is mission critical, then intended users should
be trained to overcome usability problems. If any testing is to be done on
usability, it should aim at identifying areas where further development or
training might be required. There may be exceptions to this general guidance,
cases where the tester must test a mission critical system for usability. In
such cases, it is imperative that the test subjects replicate closely the
intended user. This includes replicating the training that the typical user
would undergo. It also includes replicating the user’s rank. If a mission
critical expert system will be used by a general and if it must be tested for

usability, the general must be used as a test subject.

Automatic System

Expert systems that operate automatically without human interaction
require a higher degree of accuracy, since there is no chance for a human to
override and correct an erroneous decision by the system. By the same token,
usability factors are unimportant, since there is no human user, but system
integration features (analogous to usability features for a machine) are

important. The following are the most important criteria:

1. Performance, especially against ground truth.

2. System Integration, especially 1f the expert system is embedded in
a larger system,

3. Knowledge Base:
a. Accuracy of answers and facts. If the system operates

automatically, there is no chance for a human to correct a
system error.

b. Functional completeness. The system must be able to reli-
ably address all the interactions for which it is designed,
since a human cannot intervermne.

c. Logical consistency. To the extent that inconsistencies can
cause erroneous performance, i.e., conflicting or circular
rules.

4. Judgmentally Assessed Quality. For areas where judgment is the

only way to assess the quality of the answer, this is important
(again, because a human will not be able to correct a mistake by
the system).

Unless the use of the automatic expert system will impact organizational

factors, all usability criteria are unimportant.

Expertise t Use

Assist an Expert. Many expert systems are designed to assist a user who
is already an expert. For systems that are not mission critical and that

assist an expert, greatest testing attention should address:

1. Acceptability. The system must be acceptable to the expert or it
will not be used. If the system has to support multiple experts

7-6

in an organization, then it must be acceptable to the organiza-
tion.

2. Ease of Use. It is important that the expert finds the system
easy to use,

3. Judgmental Quality of Answers. For the expert to rely on and use
the system, he must feel confident about the quality of answers
that this system produces. Nonjudgmentally determined quality
indicators are less likely to impress the expert.

4, Organizational Impact. 1f the system is developed somewhere other
than at the intended user’'s organization, its organizational
impact is an important determinant of whether or not the system
will be used.

Since the person assisted is an expert, logical problems (consistency,

completeness, and accuracy) are much less important and require less testing.

Assist a Novice. Many expert systems are intended to assist a novice
and to improve a novice’s performance, possibly to an expert’s level. For
systems that are not mission critical and that assist a novice, the following

should receive greatest attention in testing:

1. Judgmentally Determined Quality of Answers. This may provide the
novice with experiences similar to having an expert mentor. The
novice is assisted with answers and reasons that are similar to
those of an expert.

2. Quality of the Knowledge Base. The novice is less able than an
expert to compensate for deficiencies in the structure or content
of the knowledge base.

3. Usability. Increased usability will likely translate into in-
creased use by the novice. However, usability is less important
for a system that assists a novice than for one that assists an
expert because it is assumed that a novice will have a higher
tolerance for training than will an expert.

4, Extent of Coverage. Agaln, the novice cannot compensate for
deficient coverage.

5. Organizational Impact. Organizational impact will influence
heavily the extent of use.

7-7

Widely Distributed

Some expert systems are developed with the intention of being used
widely; i.e., the system will be used by people who were not involved in the
development and who may even be in different organizations. Such systems may
also cause a large organizational impact by changing the way that things are
done. Such systems are the most difficult to test and, except for mission
critical systems, the most important to test extensively and well. All
factors need to be considered in testing widely distributed systems, because
the extent and manner of use cannot be predicted precisely. Different uses
and users will likely encounter different types of problems which could lead
tc errors or disuse. To the extent that a widely distributed system is also
one of the types mentioned above, more attention should be given to some
attributes, but all attributes need to be tested at some level, and minimal
thresholds of performance need to be met on all attributes (although the

threshold may be very low for some attributes for some situations).

Two other characteristics of the expert system setting may also be
important—a constrained computer environment and a tight testing budget.
Some expert systems will operate near the limits of its computer’s environment
due to either hardware or software considerations. (The condition may
manifest itself by slow operations.) In a constrained environment, the tester
should pay some attention to factors that affect performance in the con-
strained environment. These include computer usage factors and factors that
affect efficiency—redundant and subsumed rules, unreferenced attribute values
and dead ends, and features used. Examining these attributes enables the
tester to suggest changes to the system (e.g., to delete a little-used
feature) that could relieve some of the environmental constraints and improve

performance or other factors (e.g., speed).

Sometimes, extremely limited resources are available for testing. In
this case, what should a tester do? First, if the system is mission critical,
the tester should inform the appropriate manager of the inadequacy of the
testing resources and the possible dire consequences of using the inadequately
tested system. If no additional resources are foithcoming, the tester could
test those attributes listed above to the extent possible. Any testing report

should clearly state the limited scope of the tests and opinions of {ts

7-8

inadequacy. For systems that are not mission critical, limited testing may
suffice. Systems should be subjected to several cursory overall checks by
running a few test cases (e.g., a few typical cases and a few extreme cases
that are most likely to cause problems). Then, areas of highest importance
(e.g., as outlined above) should be tested, possibly using some of the less
resource-intensive methods. Test reports should again state the limited scope

of testing and qualify any conclusions as appropriate.

PERFORMING THE TESTS

After welghts are specified at all levels in the hierarchy, the expert
system is tested against the bottom-level attributes. These tests provide the
information needed to apply Equation 3-1 and to complete the MAUA as described
in Chapter 3. Testing may be conducted by applying a combination of the
subjective, technical, and empirical methods described in Chapters 3 through
6. It may not always be possible to test the expert system against every
criterion in a thorough manner. This section provides some informal advice on
the factors that most affect the ability to test a system against the various
criteria, a description of an extensive test, and suggestions for how to
perform a reduced test. This advice is arranged according to sections in the

hierarchy. Again, the advice is the opinion of the authors.

Knowledge- e Structur

Factors Affecting the Ability to Test.

1. Time. A complete testing of the knowledge-base structure for
consistency is time-consuming, especially in the absence of
automated tools.

2. Testing Resources. Because of the time needed, it is expensive to
perform this type of testing.

3. Automated Tools. Testing would be facilitated by automated tools
to characterize the knowledge structure and check it for undesir-
able properties. However, such tools are not now readily avail-
able.

Testing for Logical Consistency. To test extensively for logical

consistency, a tester must:

7-9

1. Characterize the entire knowledge structure in an appropriate
representation scheme such as a directed graph or matrix.

2. Examine the structure for undesirable characteristics such as
redundant, subsumed, conflicting, and circular rules.

For other than rule-based systems, similar tests are possible if the
knowledge representation scheme (e.g., frames) can be transformed intec an
equivalent rule base. A thorough examination of the logical consistency is

impossible for a large expert systeam.

In cases where exhaustive testing is impossible or impractical (e.g., in
large systems), a sampling of the knowledge base may be subjected to testing.
One sampling scheme that is often used is to check rules in pairs only. This
will detect many of the most common problems of consistency, but will not
detect the more complicated consistency errors introduced in longer logic
strings (see Chapter 4 for an example). Checking pairs of rules is a common

testing strategy and about the only one discussed in the literature.

Another strategy is to test a sampling of the knowledge base. This
could use techniques of simple random sampling or stratified random sampling.
Where it is possible, a stratified sample should be used that contains more
instances of critical rules—that is, rules that could lead to those decisions

with the potential for large errors.

Testing for Logical Completeness. 1In general, characteristics of
logical completeness affect the efficiency of operation of the expert system.
This, in turn, may affect the timeliness of response and operations. Charac-
teristics of logical completeness Influence errors less directly than do
characteristics of logical consistency. However, in some situations, the
inference engine may designate a different order of rule fiiing when the
system is stressed, and this could lead to problems in logic. In addition,
errors of logical completeness are indicative of sloppy programming, which may

indicate other problems.

Extensive testing for errors of logical completennss uses the szame
techniques as extensive tests for logical consistency. Reduced testing fox

errors of logical completeness uses the same techniques as does reducaed

7-10

testing for logical consistency. In addition, the data for some tests of
logical completeness are generated as by-products from other tests. In
particular, test cases that are developed to test the quality or acceptability
of answers indirectly provide data for tests of logical completeness. For
example, cases where the expert system fails to provide an answer to a valid
set of inputs could be due to errors in logical completeness. Upon noticing
such a problem, the tester could follow up with a more detailed investigation

into the possibility of this type of logical error.
Knowledge-Base Content

Factors Affecting the Ability to Test. Unlike characteristics of
logical consistency and completeness, which can be assessed strictly by the
logic in the knowledge base, an assessment of the content of a knowledge base
requires an external standard. There are several possibilities for providing

such a standard.

1. Requirements Document. A complete requirements document should
sufficiently describe the area of application so that these
features can be tested.

2. Access to Expert. In cases where requirements are insufficiently
documented, an expert may be able to provide the necessary de-
scription of the application.

3. Access to the Operaring Setting. 1In cases where requirements are
inewfficiently documented and an expert cannot adequately describe
the functional requirements, the tester may be able to infer these
requirements from an examination of actual input data and observa-
tion of people performing the tasks that the system will perform
or aid.

The accuracy of rules, especially for a knowledge-based system, might be
determined from an expert or panel of experts, and these experts must be
available. (An important exception is where some part of the rule base
encodes physical laws, in which case an expert is not needed.) An expert is
also needed to determine the adequacy of the knowledge representation.

Because of the expense of using experts, sufficient resources are needed to

test the content,

7-11

Testing for Functional Completeness. The following activities should be .

included in an extensive test for functional completeness:

1. Determine the scope of application. If a complete requirements
document exists, this will provide a description of the range of
application including all types and numbers of inputs, all appli-
cations, and the range of conclusions that should be possible.

2. Confirm the scope of application. By examining actual data and
observing as much of the decision setting as possible, confirm the
range of inputs, applications, and range of conclusions required.
1f there are differences between the observed scope and the stated
scope, make a note of the differences in the test report.

3. Test that the system responds to the range of data with the range
of conclusions. Exercise the system with test cases to determine
if the system responds appropriately. The choice of test cases
should include: typical or representative data (both quality and
quantity), data representing extreme inputs, and cases expected to
return extreme conclusions (especially more important conclu-
sions). 1If previous sets of test cases (e.g., those used in
development) are available, run these as well for a regression
test. Representative test cases provide information on normal
operations of the system. (By keeping track of the system’'s
cperating characteristics such as speed, this test will also
provide information in assessing other attributes.) Extreme test
cases may be more important for assessing functional completeness.
The system should provide appropriate conclusions even to extreme
inputs. Similarly, legal inputs should be all that are required
to support extreme conclusions that are within the scope of
application. (This may be more easily tested in backward-chaining
systems.)

4. Select test cases outside of the range of application. Both
inputs and conclusions outside of the range of application should
be tested. This will provide data to assess whether the system
knows its limits and responds appropriately.

There are two areas that might cause testing for functional completeness
to be reduced—determination of the scope of application and selection of test
cases. In cases where a requirements document is not available, experts are
not available, and the decision setting is inaccessible to the tester, the
scope of application may need to be inferred by examining the code or by
observing the system’s interactions and output. This will require more of the
tester’s effort, but does not require resources that are not available. 1{
this method is used to infer the scope of the application, the tester should
be sure to state this clearly in the test report. .

7-12

The other area for reducing testing is in the selection of test cases.
A reduced set may require fewer resources to select, run, and analyze. Even
with a reduced set, the tester should attempt to give some coverage to extreme

and important cases and some attention to normal operating cases.

Testing for Predictive Accuracy. The following activities are needed

for an extensive test of predictive accuracy:

1. Check all facts against a recognized authority. The authority
could be a reference document, a written regulation, an expert, or
a panel of experts. Reference documents are generally the best
sources for checking factual information. A single expert may be
sufficient to verify facts, but we recommend a panel of experts tn
verify the accuracy of rules. In cases where the facts will
change during the operation of the system (e.g., when the facts
are the contents of intelligence reports), the process for receiv-
ing, verifying, and changing facts should be tested. This test
will need to use a sample of test cases. Some test cases should
be chosen to be representative of the actual operations; others
should reflect the extremes of what might happen.

2. Check all rules. Check all rule sequences against the consensus
authority of a panel of experts. In most actual expert systems,
the number of sequences of rules will be too large to check and a
sampling is needed. If so, the sample should contain sequences
that represent normal operations, unusual sequences, and other
extreme sequences that could lead to extreme conclusions.

3. Verify the adequacy of sources. Official guidance or regulations
may specify some sources of facts. At the other extreme, a
consensus of experts may be needed to certify the expert whose
expertise was encoded in the system.

4, Test the procedure for changing the knowledge base. Determine
whether, and under what conditions, the knowledge base (e.g.,
rules, frames, etc.) could be changed, who is allowed to make the
change, and how. Assess the criticality of the changeable portion
of the system, and verify that allowed changes are appropriate.
The authority on the appropriateness of the changes could be a
regulation, a requirements document, an expert, or a manager of
the operation.

Several changes in procedure could be used if rescurces or conditions do

not permit or require extensive testing of content. These include:

1. Use a single expert instead of a panel of experts. It is usually
cheaper and easier to use a single expert, and, unless the system
is critical, a single expert will often suffice.

7-13

2. If requirements documents do not address the factors that the user
should be allowed to modify, the tester could use his judgment.
If the tester uses his judgment, he should state this, along with
any reasoning, in the test report.

3. Use available documents in the absence of authoritative refer-
ences. In these cases especially, the sources should be indicated
in the test report.

4. Rely on reputation or apparent expertise (e.g., as indicated by
position or title) to assess the adequacy of the source. 1f it is
difficult to establish credentials definitively, this may suffice.

Inference Engine

As a practical matter, it is difficult to test an inference engine, and
most testers do not even try. For noncritical applications of widely used and
established environments, tools, or shells, this practice should not cause a
serious problem. The widespread use of the tool will probably turn up most of
the problems with the inference engine, and the noncritical nature of the
application limits the seriousness of possible problems. Furthermore, other
tests (e.g., those aimed at discovering the correctness of reasoning or of
conclusions) can find some of the problems that could be caused by a faulty

inference engine.

The development of benchmarks would aid in the testing of infevrence
engines. A benchmark is a standard module of coded knowledge with known,
proven-correct results that can be coded on a variety of inference engines.
The correct performance of the inference engine on a comprehensive set of
benchmarks provides strong evidence that the inference engine is correct.

Unfortunately, such a set of benchmarks has not yet been developed.

Another approach to testing inference engines is to code identical
knowledge bases in different inference-engine products (e.g., shells) and
exercise these programs in parallel. If the behavior of all of the systems is
the same, this gives some evidence that the inference engines are free of
problems. However, this evidence is not absolutely conclusive, Furthermore,
different results indicate problems in one or more inference engines. but na:

not indicate which particular inference engine is faulty. This procedure is

7-14

also expensive, and the expense will be hard to justify for any but the most
critical expert systems.

ns-e.gtj ceﬂ
Factors Affecting the Ability to Test.

1. System Description. 1In order to test system compatibflity and
integration, the target hardware, software, and organizational
systems need to be specified and defined.

2. Automated Tools. Testing for internal machine characteristics may
require automated support tools.

3. Access to Hardware and Software. Expert systems that are designed
to be operated on several systems should be tested on those

svstems, and this requires access to the full range of intended
hardware and software.

Testing for Service Requirements. An extensive test for service

requirements would include the following:

1. Direct measurement of some items such as set-up time.

2. Use of internal mechanisms or automated tools such as internal
"clocks" and internal machine utilization maps.

3. Operating the expert system on the full range of targeted hardware
and software platforms.

4. Complete checking of system integration attributes.

A reduced test of service attributes could be attained by attempting to
operate the expert system in a reasonable approximation of its intended
operating setting (hardware, software, operating personnel, organization) and

noting problems with "service" attributes.
Pe nce
Factors Affecting the Ability to Test.

1. Ground Truth. Actual test cases with correct, ground truth
answers form a solid basis for testing performance. Most expert

7-15

system applications arve not directed at situations where such
answers exist. However, it is still useful to search fur parts of
an expert system (e.g., a forecasting module) that can be tested
against ground truth.

2. Avatlability of Experts. Experts are likely to be required to
Judge the performance of an expert system. Exper:s are generally
scarce and expensive.

Testing for Performance. To test an expert system's performance

thoroughly, a test should:

1. Use many test cases. These cases should include instances of
ground truth, as well as instances thac require expert judgment.
Cases should be chosen tc simulate the expected and extreme
aspects of the intended use of the expert system, both in the
difficulty of the problem aid the level and timing of input. 1In
addition, some cases should probe the limits of the system’s

cperation, by being at the extremes of inputs and at the extremes
of consequences.

2. Use a group of experts. We recommend the use of a gioup of
experts to judge the quality ci the expert system’s answers and
reasons.

3. Analyze data and perform statistiral tests. Chapter 5 provides

the details on how to analyze data.

Reduced testing of performance would use fewer test cases and fewer
experts. Test cases should still be chosen to represent the expected situa-
tlion and some of the extremes. The methods described in Chapter 5 are useful
for choosing sample sizes. A single expert will often suffice if the exuver:

system is not mission critical.

Usability

Factors Affecting the Ability to Test.

1. Availability of fubjects. Subjects are necessary to test for
usability. Usability features can be ascertained only by observ-
ing or questioning users.

2. Access to Realistic Zircumstances. Having actual hardware,
software, other equipment, realistic problem s~enarios, and
realistic personnel and organizational setting provides the basis
for a reliable test of usability.

7-16

3. Special Facilities. Special facilities such as unobtrusive, one-
way observation rooms aid in testing .lLservable aspects of usabil-
ity.

Testing for Us«billty. An extensive test for usability will include:

1. Use many test subjects. Ideally, the test subjects will have the
level of skill and training, including training in the use of the
expert system, as the ultimate intended user. The use of many
subjects will allow the tester to perform statistical analyses of
usebllity data.

2. Use realistic settings. 1deally, the organizational setting, as
well as hardware, software, and other equipment, should replicate
the setting in which the expert system will be used. Additional-
ly, a full range of realistic test scenarios should provide the
basis for assessing usability under extreme conditions such as
time stress, as well as under routin. conditions.

3. Administer questionnaires, Both types of quectionnaires in the
Appe..dix are appropriate for eliciting usability informe+*ion. In
an extensive test, both questionnaires should be used and this
should be supplemented by open-ended interviews and follow-up
questions.

4. Observe behavior. The behavior of subjects should be observed and
the extent of use, manner of use, and features u:ed should be
recorded. This information can counter biases that subjects may
express in answering questionnaires. Ideally, an unobtrusive omne-
way observation room should be used so that the observation does
nct affect the subject’'s behavior. Some aspects, such as a log of
features used might be automated as part of the computer system,
but ~are should be taken to avoid changing the operation of the
expert system.

Reduced tescing for usability can be achieved by using fewer subjects,
fewer scenarios, and fewer questioning techniques. Even with fewer subjects,
attempts should be made to obtain subjects with the appropriate skill and
training levels. In any case, the tester si.ould describe the test subjects in
the test report (e.g., by number, rank, training, job function, etc.). Fewer
scenarios should still reflect both the normal operating condition and a
stressed conditic:, if possible. 1In many cases, the simpler questionnaire
(the one with Likert-type scales) should be sufficient. Extensive observation
may be impossihble, but even a cursory observation by walking around near the

end of the test can provide some useful information.

7-17

CHAPTER SUMMARY

This chapter addressed aspects of pulling the ideas from Chapcters 3
through 6 toge*ror .n a test «f an expert system. We first dlscus..d aspects
invelved in establishing weights in a multiactribute ucility tramework and how
this framework can be used te elicit Irformation about fmperrvent hlogs to
test from sponsoring agencies. Next, we offered suggestions on the relative
importance of different attributcs based or a characterizatiasn of rhe expert
system. Finally, we offered suggestions for testing activicies in each major
attribute category based on the extent of testing that is feasible. We also
discussed factors that could fnfluence or limit the ability to test for each
category of attributes. The suggestions offered in this chapter are the

opinions of the authors.

7-18

CHAPTER 8:

OTHER APPROACHES TO TEST AND EVALUATION

Thus far, we have not explicitly focused on the issues of verification
versus validation, static versus dynamic testing, software quality mectrics,
or design and codiny standards. This chapter will do so in three subsec-
tions, respectively. Each subsection will first define the issues and
terms, and then identify test and evaluation criteria and attributes in
Table 2-1 that address them.

As indicated in previous chapters, subjective, technical, and empir-
ical test and evaluation methods are designed for assessing the system’s
score on different criteria and attributes. The criteria and attributes
are the critical reference pointi, not the methods. By focusing on the
criteria and attributes, one can subsequently identify the test and
evaluation methods addressing verification versus validation, static versus
dynamic testing, and various software quality factors. As mentioned

earlier, we do not address software design and coding standards.

VERIFICATION VERSUS VALIDATION

Verification refers to assessing how well the system was built.
Validation refers to assessing whether or not the right system was built.
Verification addresses the internal correctness of the system. Validation
addresses the external correctness of the system. Verification tests for
logical inconsistencies in the system and programming bugs in the software.
Validation tests for the accuracy of the information in the system, and for

its usability by operators performing their tasks.

The shaded portions of Figure 8-1 identify the criteria and attributes
addressing expert system verification; the unshaded portions address expert
system validation. Verification means testing for the logical consistency
and logical completeness of the expert system's knowledge base, inference
engine, and "service features." The focus is on ensuring the internal

correctness of the system. Even if the knowledge base’'s content were of

8-1

ER IRV VR T Ay

SR RER]

WO YNY O
3C LY @

DNINIZYL /S YIRS

LAV IEOIAS TALS
MEOM JC Ll @

TWYNOIITVZINYOUC

T igvant 1_

]

 — A — ———— S A r—

MNILEAS 1HIdX3
2D SNV ISNVHL @
IDVYLNOHLYINISIHd
K ADINCIAVY @

“‘ ZC_ AL ATV E _

NOILYOiTddV
40 3d400S

|

I

SPOyI9W (PapeySuf) uonEpP]jEA SNSIOA
(papeuS) UOHEINIIBA BUISSAIPPY BLIBILD uolenieAd pueisay ‘18 ainbi4

NdLNOANGN @
INIHOS
NOi1VINIS3Hd 3

40 AUNEYIJIOOV @
$1MNS3H

40 ALTIGVIIOOV @
NOILOVHIINI
INIHOVINNVA

4O AUNEVidIOY @

38N 40 3SV3 @

3ON3CGIINCD @

Q3ISN S3YNUVii @
38N JO HINNWYW @
3ISN H0 INBX3 3

-

NOINIJO ;

_ 319VAHISE0 ;

Bl

SNOSVYZH) ALWYNC @
SHIMSMY JO ALTND @
WSV L HSITAWIISVOL INIL @

ML ISNOCS3H 8

svig @
ADVHNOOY @
g33ds @

tanoanr |

HLNHL ONNOYD

e e ot e —— a1

ALINEYSN

[

1

|

]

[3onviboAu3d |

3sv8

3OQIMONMN S0 ALINEVITON -

NOILVAN3ISIHd 30 IDTTTMON -

IOHNOS 40 AQVND3AV - ‘
ALIMEY1d300V Lo . soNdavag

”.,ggﬁmsgza .

33NY 40 ADVHNIDV - s8I IINSHLLY WOITS -

$10V4 40 ADVHNOOV - H S SANNA
ADVHNDOV JALLOIOIHL @ &:m.mﬁ« OAONTHF JTUNG -
SNOLLVLIWGD e ESINTITIGNOA TWHOOT @
IDAITMONM GISLIN3QI - P STWRIHWIONS -
QIVIACD ATI3LININOD CHTHH DHUDTENOD -
NOISRTONOO/NOILYDI IddV - S BIWNG OINASENS. -
S1NdNI 0341$30 1V - SN ANVONNQEE -

SSINILIVINOD TWNOILONNS @ ADNIEEISNGD YOI &

— IN3LNOD |_ ~ FUNLONYIS ~
|]
L

[3sve 3003 MON|

J

7IVH3IA0

8-2

low quality, one could still verify that the expert system was free from

any logical flaws and that it was designed and programmed well.

In contrast, validation means testing for the functional completeness
and predictive accuracy of the knowledge base’s content, and for all
performance and usability attributes of operators working with the system.
The focus 1s on ensuring the external correctness of the system. We want
to validate that the knowledge base contains expertise and, more generally,
that the expert system permits its users and the larger organization to do

their job better.

As Table 8-1 illustrates, the overall utility of an expert system
depends on successful verification and validation testing. As we have
discussed earlier, the relative importance of testing all the attributes in
the hierarchy-—that is, complete verification and validation—depends on
the environmental conditions facing the test and evaluation team. Never-
theless, there is an inherent dependency between attributes in the hilerar-
chy. 1If verification testing identifies severe logical flaws in the
system, users will probably not perform well regardless of the expertise
embedded in the knowledge base. Similarly, if validation testing iden-
tifies severe performance and usability deficiencies with the system, they
may be due to the internal correctness of the knowledge base, inference
engine, or “"service" components, and not the knowledge base’s expertise.
For these reasons, complete V&V (verification and validation) should be

performed whenever possible.

STATIC VERSUS DYNAMIC TESTING

Static and dynamic testing are two approaches to testing conventional
software systems that are also applicable to expert systems. Static
testing refers to assessing system quality without actually executing its
code. Conventional static testing methods include code inspections and
walkthroughs and specially designed programs to assess logic problems,
structural errors, syntactic errors, and coding and interface consistency
with accepted programming standards. In contrast, dynamic testing refers
to using test cases to execute the code and thereby assess system quality.

Conventional dynamic testing methods include functional tests, performance

8-3

Table 8-1: Linking Software Quality Subfactors to Attributes in the Hierarchy

Software
Quality
Factor

Software
Quality
Subfactor

Attributes in
Hierarchy

Correctness

Traceability

All Attributes if Use Hierarchy as a
Requirements Tool

Completeness

Knowledge Base Structure
» Logical Completeness
. Functional Completeness

Usability: Scope of Application

Consistency

Knowledge Base Structure
s Logical Consistency

"Service:" System Integration
e Formats
s Data Requirements
¢ Documentation

Error Tolerance

"Service:" Computer Usage
s Degradation Handling
¢ Input/Output Errors

Reliability

Consistency

Knowledge Base Structure
* Logical Consistency

"Service:" System Integration
e Formats
e Data Requirements
e Documentation

Error Tolerance

"Service:" Computer Usage
e Reliability (Hardware)
e Degradation Handling
e Input/Output Errors

Accuracy

Knowledge Base: Content
e Accuracy of Facts
® Accuracy of Rules
¢ Adequacy of Source

Inference Engine

8-4

Table 8-1: Linking Software Quality Subfactors to Attributes in the Hierarchy

(Continued)

Software

Quality
Factor

Software Attributes in
Quality Hierarchy
Subfactor

Reliability
{cont.)

Accuracy Performance: Ground Truth
(cont.) e Accuracy
¢ Bias

Performance: Judgment
¢ Quality of Answers
¢ Quality of Reasons

Usability: Opinion
s Confidence
e Acceptability of Results

Structural Knowledge Base: Content
Simplicity s Knowledge Representation
Acceptability

Usability: Opinion
¢ Acceptability of
Representation Scheme

Usability: Explanation
¢ Transparency of Expert System

Test Adeguacy All Attributes in the Hierarchy are
Designed for Thorough Testing of
System

Efficiency

Execution "Service:" Computer Usage
Efficiency s Run Time

Performance: Ground Truth
e Speed

Performance: Judgment
s Response Time
¢ Time to Accomplish Task

Storage "Service:" Computer Usage
Efficiency ¢ Space Requirements
e Capability (Hardware)

Table 8-1: Linking Software Quality Subfactors to Attributes in the Hierarchy

{Continued)
Software Software Attributes in
Quality Qualicy Hierarchy
Factor Subfactor
Integricy Access Control Knowledge Base: Content
e Modifiability of Knowledge
Base
"Service:" Computer System
¢ Design
Access
Auditability
Usabilicy Communicative- Usability: Observable
ness ¢ Extent of Use
o Manner of Use
¢ Features Used
Usability: Opinion
¢ Ease of Use
s Acceptability of Man/Machine
Interaction
s Input/Output
Usability: Explanation
e Adequacy of Presentation/Trace
Usability: Organizational Impact
s Work Style/Workload,
Skills/Training
¢ Procedures/Structure
Operability "Service:” Computer Usage
e Set-Up Time
e Space Requirements
¢ Reliability (Hardware)
e Capability (Hardware)
e Feature Use/Jumpings
o Degradation Handling
¢ Input/Output Errors
e Skill Requirements
i

8-6

Table 8-1: Linking Software Quality Subfactors to Attributes in the Hierarchy

(Continued)
Software Software Attributes in
Quality Quality Hierarchy
Factor Subfactor
Maintain- Consistency Knowledge Base: Structure
ability e Logical Consistency
"Service:" System Integration
® Formats
s Data Requirements
¢ Documentation
e Skill Requirements
Structural Knowledge Base: Content
Simplicity * Knowledge Representation
Acceptability
Usability: Opinion
s Acceptability of
Representation Scheme
Usability: Explanation
* Transparency of Expert System
Modularity Knowledge Base: Structure
welf "Service:" System Integration
Descriptiveness e Documentation
Documentation "Service:" System Integration
Adequacy ¢ Documentation
Testability Structural Knowledge Base: Content
Simplicity ¢ Knowledge Representation
Acceptability
Usability: Opinion
s Acceptability of
Representation Scheme
Usability: Explanation
o Transparency of Expert System
Modularity Knowledge Base: Structure
Instrumentation

8-7

Table 8-1: Linking Software Quality Subfactors to Attributes in the Hierarchy
(Continued)

Software Software Attributes in

Quality Quality Hierarchy

Factor Subfactor

Flexibility Modularity Knowledge Base: Structure
Self "Service:" System Integration
Descriptiveness s Documentation
Documentation "Service:" System Integration
Adequacy e Documentation
Expandability Knowledge Base: Content

¢ Modifiability of
Knowledge Base

Portability Modularity Knowledge Base: Structure
Self "Service:" System Integration
Descriptiveness o Documentation
Machine "Service:" Computer System
Independence e Portability

Reusability Modularity Knowledge Base: Structure
Self "Service:" System Integration
Descriptiveness ¢ Documentation
Machine "Service:" Computer System
Independence ¢ Portability

Inter- Modularity Knowledge Base: Structure

Operability
Data Commonality} "Service:" System Integration

e Data Requirements

Communications
Commonality

"Service:"” System Integration
e Formats

e

8-8

tests, stress tests, and structural tests. Both static and dynamic testi:,,
methods are used to test the "service requirements" of conventional

software systems.

For some of the attributes in our test and evaluation hierarchy, it is
clear whether static or dynamic testing methods are most appropriate. For
example, static methods are most appropriate for assessing the System
Integration attributes: formats, data requirements, documentation, and
skill requirements. In contrast, dynamic methods using test cases, not
just loading and running the software, are most appropriate for assessing

the ground truth performance measures of accuracy and bias.

However, other attributes can be assessed using either static or
dynamic testing methods. For example, Chapter 4 overviewed static testing
methods (e.g., using flow graphs, Incident matrices, and Boolean algebra)
to assess the logical consistency and completeness of the knowledge base.
In addition, we overviewed a program calied Validator that uses test cases
to assess these attributes. Similarly, specific test cases, sometimes
embedded in a larger scenario, are typically used to assess the expert
system’s usability. However, one could also give one a demonstration of
the system to obtain usability judgments. Although the system might be
executed, in the sense that the software is run, realistic test cases do
not have to be part of the demonstration. This is, however, an inferior

approach to assessing expert system usability.

The shaded portion of Figure 8-2 identifies those criteria and
attributes that are typically assessed by static testing methods. The
unshaded portion of Figure 8-2 identifies the criteria and attributes
typically assessed by dynamic testing methods.

SOFTWARE QUALITY FACTORS
Sizemore (1990) has recently matched various test and evaluation
methods to software quality factors (or metrics) identificd in the software

engineering literature, especially in the Software Quality Engineering
Handbook and in McCall and Matsumoto (1980). In particular, Figure §-3

8-9

(pepeysun) spoyie Bupnsay sjweuiq pue
{papeys) spoyiap Bunsa) onels Aq passassy AjjeoidA L eliol) uonlenjeA pue §saj

:z-g 24nbi4

1NdINO/ANGNI @

INIHOS
NOILLVINIS3HdIY
40 AUNBYLIHIOOV @
JUNLONHILS S17NS3Y
/S34NA300Ud 40 ALNBY1d3IO0V @
IWNOILLVZINYDOHO NOLLOVHI NI
40 10VdNl @ W3LSAS 143d4X3 ANIHOVWNYW
ONINIVHUSTUNS 40 ADNIJUVISNVHL @ 40 ALINGYLdIIV @ g38N S3HNIVI4 @
QYO INHOMITALS FOVH I/NOILVINISIHd ISN403ISVI @ 39N 40 HINNVN @
RHOM SO 1OVdINI @ 40 AOVND3IAV © JFONAAIINOD @ SN JO INIIXT @
Tovam
JYNOLLYZINVOHO [nouvwiaxa | N oona! nomido | T1GYANIS0 |
35v8
JFDAITMONN 4O ALITIBVIIIOON -
3OHNOS JO ADVNOIAY -
ALNBYLd300V

[auvewvsn |

_

_

[3onvwuosu3d |

|

NOLLYIN3SIHJIH IDOTITMONN -
SITINY IO AQVHNOOY -

S1OV4 40 ADVHNAIOY -
ADVHNIOV JALLDIGTHd @
ONITANVH NOILYOVHD3] - SNOLLY LW
uz_n_s.DEmmD JHNLVII - JOAIMONN G INIAE -
SNOSV3Y JO ALTVND @ Q343A02 A13131INOD
SHIMSNY SO AUTVNO @ svig ® NOISNTONOINOILLY D Y -
NSY1 HSITdWOJOY O1 JNL @ AOVHNOOV @ SLNdNI Q3WIS3a TV -
INIL ISNOJSTH @ a33ds @ S$SINILIHWOD TYNOILONNS @ AONBLSIENOD égmo“ .
_l 1N3woane _ HLNYL ANAOHD — INIINOD _ m . SHALONKLS . _
}] | |

_

[Somuss. | [awonazonawasn] [3sve 30a3mony|

[| B

TIVH3IAO

8-10

QUALITY DEPINIMON Uagm ACQUISITION
FACTOR CONCERN CONCERN
The abilty of a softvare system 10 perform its
EPPICIENCY required functions with minimum oconsumpon of How wal ‘.’,"" k uticze
ocompusr e and SOMIQe TESOUoes . fescurces
" -
|
The ability of a software system to control unauthorized iy
l'NTEQR'" access ¥ or modification of system software or data. ['OV MU 8 €7
i PERFORMANCE
; (How wett doss & |
| function ?)
'HELIABIL!TY abiity of & sofware system to perform its What confidence can be
i requirad functions with cormect and consiglent results placed in what t does 7
[g
}usuu.mr he abilly of & 3oMwre tysiem 1 be assily How emmy & 1 10 1507
i The edent o which the software satisfies its How weil does # conform ’
iCORRECTNESQ specfication and fulfills the user requersments ©© the requirsments ?
L A 8
| DESIN
MAINTAIN- The abilty of a sofware system 1 be easily comected L !
ABILITY when ermory are decoversd . How sy @ & © repar ? (How veld s the
' desgn 7)
The abity of a software sysemn 10 be sasily and How eagy s & to venly
TESTABILITY thoroughly \etad . i perdormance 7
f
+
1 The abxity of a software system © be easity modified { }
:FLEX!NLITY o meet New fequirements . How easy & # 1o change 7 i
-
i
{INTEROPER. The abilty of a software systam 10 eftectivety exchange How sasy 8 & t0 intertace
i ABILITY informanon with other software systems . with another sysiem ?
! ADAPTABILITY
1 { How adaptable —
! s l?)
! The abiity of 8 sofwers systwn 10 be sasily modified How oesy & 4 10
%POHTABfLITY 10 OOSMIB N1 MOre than ONE A~ vironment vanspont 7
!
! -
‘ How sasy & 4 10 conven
The abdity of a software system of parts of a system
REUSABILITY © be used N1 MuRipis apEICAtons . for use N ;nomec

Source: Sizemore (1990), p.14

8-11

Figure 8-3: Software Quality Factors

presents the eleven software quality factors he used; Figure 8-4 presents a
matrix representation of how these eleven software quality factors are
decomposed into more measurable subfactors; and Figure B-5 presents the
definitions of each of the subfactors. We considerved it important faoi
completeness to assess whether the test and evaluation criteria and
attrihutes in our hierarchy (Table 2-1 and Table 3-9) addressed the

software quality factors and subfactors used in Sizemore’s study.

Table 8-1 links the test and evaluation attributes in our hierarchy to
Sizemore’s software quality factors and subfactors. That is, for an, given
software quality subfactor, Table 8-1 identifies the appropriate test and
evaluation attributes in our hierarchy. For example, Table 8-1 indicates
the subfactor Consistency can be assess»d in the hierarchy by examining (1)
the logical consistency of the knowledge base and (2) four system integra-
tion attributes: format consistency, consistency with data requirements,
documentation consistency, and the system's consistency with the identified
skill requirements of the users. This view takes a broad interpretation of
"consistency” as found by Sizemore. We suggest that much of the software
engineering literature interprets "consistency" much more narrowly,

especially by including consistency with skill levels of users.

As can be seen, Table 8-1 is a very long table. This occurs because
many of the quality subfactors measure more than one qualitv factor. For
example, as shown ir Figure 8-3, the Comsistency subfactor measures
Correctness, Reliability, and Maintainability. In fact, six of the twenty-
one subfactors measure more than one factor. In all cases we have repeated
the subfactor to attribute linkages so that Table 8-1 provides the compiete

factor to subfactor to attribute linkages for the reader’'s examination.

We want to make four principal points. First, all the attributes in
the hierarchy are linked to Sizemore’s software quality subfactors. No
attribute in the hierarchy is left unaccounted for. However, in some
cases, the subfactor may need to be interpreted rather broadly to make the
linkage. For example, the Service attribute skill requircments refer to
the system’s requiring an appropriate skill level from the user. We

interpret this to be an aspect of operability, in that the system couid iun

8-12

Correctness
Reliability
Efficiency
Integrity
Usability
Maintainability
Testability
Flexibility
Portability
Reusability
Interoperability

Traceability (T)
Completeness (CM)
Consistency (CN)

Error Tolerance (ET)
Accuracy (A)

Structural Simplicity (SS)
Test Adequacy (TA)
Execution Efficiency (EE)
Storage Efficiency (SE)
Access Control (AC)
Access Auditability (2 A)
Communicativeness (C)
Operability (O)

Modularity (M)
Self-Descriptiveness (SD)
Documentation Adequacy (DA)
I::strumentation (1)
Expandability (E)

Machine Independence (MI)
Data Commonality (DC)
Comm ‘cations Commonality (C.)

Source: Sizemore (1990), p. 1-6

= --=-----
. oo N N DN A N
B I T U NN N

-l..l'.'------

---.l'.'l----
e L A T 1 T
O O N M N R
I ey
B I I
I NN NN N R NN N B N

Py

-

T

Figure 8-4: Factor to Suk’actor Decomposition ir Matrix k...

8-13

Thre extert wincir e (voducin
softwars gevelopment phase impisment the
products that praceds e . haw thew basis
n Hose products . and XOWde mechansms
e md i establishing hose Gee :
|

. B

. The extent o which & system containe ail
© required components anxd sach X those
. components fully cevelopad .

T
{ COMPLETENESS) t
‘\\—-————WH-——/‘

' Tha extent 10 which a system ‘& code and
i docurmentaton are uniform and hee of
| contradcuon

[P

EXBCUTIGN 2517 28

et 15 2 e

ot 10 winch & system performs s |

| The
l i
i harvdors »th minemum sxscubon |

§

| ‘$TORAGE EFFICIENCY ; i

Thy dent ©0 atuch & systen) pontoims
intenaad functons with MM Clate .
! bor: of sorage rmecusces

i i

{CONSISTENCY *!

e
(ACCEES CONTROL)
piuhebibahalidnbiddavt

The &xiart 10 which & system provies 1
mechanmmes 10 CONTO! access to soltwate |
data . '

BT

SELF DESCRIBTIVENESS)

! The exders 10 which program souits oo
[oely 1O redct e Lo Easd

f U

| (DOCUMENTATION ADEGUACY

e Gk K W) e dd GOCL T eniahon
sl W e T oru, exl bemat . o0 w
EXAKYE e andd O DR

| {INSTRUMENTATION ; |
! , ;

The axiert b whech 8 system conans ;
INSTUCHONS Of SEmernons 10 IRoale executicn !
montonng . debuggeng . and weetng

" The extorx w which a syStem conltinues

(ERAOR TOLLRANCE)
N

0 Operaia comacty despne it #inxa
of softwwre taults

R APPSO

/ACCESS AUDITABILITY:

The axtent 10 which 8 wystam provides
mecharwsms ¥ ik tha accaseng of
| sofwere and dat: ;

T st '
(EXPANDABILITY) |
e e

| The extent W which & system can be easity x
madfed 10 prowde sdadtional UNCSONS Of !
dats storagh capacty . :

" of common data formats . types | represen- |

i i -~ r - -
e ——, { - i I -
(ACCURACY) ’ l {COMMUNICATIVENESS | | @ACH!NE INDEPENDENCE *
P i ' A
. j | :
The extent 10 winch a system i3 free trom - | The extert 10 which a System prowides H - The axternt 10 whwch 8 system can be made |
ervor N calculabons and output . 3 f wseful o and an nterface with the i ;10 execiAe v Mawe than one ha/dwaie of
e e ‘ / ——
‘TEST ADEQUACY) i | {OPERABILITY) {DATA COMMONALITY
et e i et e ! ‘ ‘—___.‘_‘____’, S — B
The extent 10 which tast planning and ‘ ;Thocmﬁbwnm-svstemccnh‘ Themnvt-d\l:yumummndud;
axacubon ensure thorough lestng of the § | loaded . nisted, exscuted . 8nd wrmunsied | i

systom

STRUCTURAL SIMPLICITY:

The axent W winch a wystem s treg rom
comphcated date . Kogcal . and oontrol
stricturas

WOBULARTY:
e

i The extert x» wiwoh & system 1 comnosed
- of descrems comoponerds such thal a change
{10 ONe COMpONart has & MINIMal et

| On ot L TDCrents anvi sk S Dhat the
BOM3 pariomrdd Dy R 8iNgle COMDonent

Source: Sizemore (1990), p. 1-5

Flaure 5.5 Yotware Quality Sublarto-;

d-14

Ehore . And Kructunng ;
{

COMMUNIC ATIONS COMMONA Ty

The exart 0 whach 8 syslem uses saaasd
o COMMITION COMMUTWCADON DIOOLr® ad
v riea ren O,

be executed if its skill requirements were excessive. A more narrow
interpretation could view operability as referring only to the system and

if it could be executed at all,

Second, all the attributes in the hierarchy can be used to measure two
subfactors: Traceability and Test Adequacy. Specifically, Traceabillity is
addressed by all the attributes because all the attributes in the hierarchy
can be used as a requirements tool, particularly in conjunction with Multi-
Attribute Utility Assessment (MAUA), as explained in Chapter 3. Similarly,
Test Adequacy is addressed because all the attributes need to be assessed
in order to test an expert system thoroughly. All the other quality
subfactors are linked to one or more, but not all, of the attributes in the

hierarchy.

Third, neither the Correctness nor Testability factors have the
"Accuracy" subfactor under it. Nor does Testability include the Communica-
tiveness subfactor, which is linked to many of the Usability attributes in
the hierarchy. These subfactors are probably omitted from the above
factors because these softwarc quality metrics were designed for conven-
tional software, not expert systems. We think these factors should include
the above subfactors for testing expert systems. However, in order to
maintain consistency with the software quality literature, we have not

included them or the corresponding attributes in Table 8-1.

Fourth, the only factors or subfactors that are unaccounted for in the
hierarchy are those, such as Modularity and Self-Descriptiveness and some
aspects of Maintainability, that relate to design and coding standards or
those, such as Access Auditability and Instrumentation, that relate to
built-in testability (which is also a design issue). As mentioned in
Chapter 3, we do not address design and coding standards. This said, if we
interpret these subfactors broadly, we can still find a linkage to the

hierarchy, and tnis i{s done in Table 8-1.

Figure 8-6 shows the linkage in the other direction. The attribute

hierarchy is shown with labels for subfactors next to each attribute.

8-15

['sainquiie jje o] paxul] 21am Ydiym .‘Aoenbapy 1sal J0 Aijjqeadelt,, siojaejqns ayl apnjoul jou $30Q :3jop1}
A4o1R13IH 34 UL JINQUIIY UoliEnjeA] YIes Aq pasSAUPPY SI0IBIANS Ayjenp asemyos ayL :9-g ainbid

INALNOILNGNL @ D

INIHOS
NOUVIN3ISIHdIH
4O ALIIBVISION @ S5
IHNLONYLS S1INS3Y
S 3NCIO0Hd JOALNBVIdIIOV @ ¥
WNOIYZINYOUO NOLLOVHILNI
) LYW @ D WALSAS 143X INIHIVNYIR
i ONINIVU LTINS JOADNIUVISNYHL @SS JOALNIBVIdIOV @ D alisnsiynivis e 2
QVOTARICHY 3L 3 VHLNOUVINISTH |/NIOISVI G 2 I[/NIOUYINNWE S D
HHOM 30 L12VdNI @ O O ADVNDIAV @ 9 "o JONIAIENOD @ ¥ A0 INIXT @ 2
1OVdni NOILVOI IddV
NG E_N_zémo | zo:mw:dxml_ 30 34095 ! owao | [3navaussso |
~]] .
H
o
IsvE
JDOTTMONY 30 ALNEVIAO0ON - ENAJ
SININIHINLIU TINS - O I0HNCS 40 ADYNDIAY - v
NOLLVININNDOO - YO'OS'ND ALIHRY1d3D0VY SAN3 av3a -
SININIWINO3YH VIVA - OO'ND NUN2STUdIH FDAIWON - 65 NOISNIONOD FIEVHOV IHNN -
SiYWEO4 - 99D STINY 40 ADVHNIOY - v S3INIVA ALNSBHLLY WO I - "
NOUVHOIINI W3LSAS @ S1OV4 20 ADVHNDIY - v SINVA NS
SHOHYI LAMLOO/INGNL - O°L3 AJVHNOV JALLOIATE @ JLNE/LLY GIONTHIAIHNN -
ONIIONYH NOLLYQYED3IG - 0'43 SNOULVLMR SSIN3LIWNOD WIDOT @
ONIWW/ASN 33N1vId - O FOATIMONA GI3UNIOL - SI1MY HYINOBID -
SNOSYTH 4O ALIVNO @ ¥ {3HVMOHYH) ALTIEY4YD - 0'3S OIHIN0D ANILTISNOD "o $3INUY DNILONANOD - n
SHIMSNY 0 ALITVIO @ ¥ svige v (SHVMGUWHIALTIGVIIAE - 043 NOISTIONOINOLLY OV - $31NY GINNSENS - ND
YSVL HSITdNOOOV OL 3NIL @ 33 AOVENOV @ ¥ SINIWHINOIY FOvdS - OIS SINdNI QWIS T - STINY INVONNGTY -
JINIL ISNOISTH @ T3 g33as @ 3 INILNOY - 33 SSINILIIGNOD TWNOLLONNS @ AONILSISNOD WID0T @
I dNF1IS - O
39vSN H3LNINOD @
_| IN3WDane _ ﬂ HiNk1 GNNOYD l‘ ALTHEVIHOD - N _ INILNOD L m IHNLONYLS _
ﬂ _ NDI530- O ~ |_
~ WALSAS H3LNGNOD @ v _

[avavsn | [zonvhuosbad | [3omuas. | {awiona Jonzuaan| | 3sva 30039mONY|

I 1 | {]

TIVH3A0

CHAPTER SUMMARY

This chapter relates the methods developed in this Handbook to other
approaches to software testing and evaluation. 1In particular, we show how
the attributes in our framework for testing and evaluating expert systems
relate to: verification and validation, static and dynamic testing, and
especially software qualitr factors. We find that: 1) all attributes in
the framework relate to software quality subfactors; 2) all attributes in
the framework can be used to measure traceability and test adequacy; 3) the
only software quality factors or subfactors that are not in our framework
are those that relate to design and coding standards or to built-in
testability.

8-17

CHAPTER 9:

FUTURE nomrersoeg

The last few years have seen an explosion of interest in testing
artificial intelligence and knowledge-based systems. As one indication, over
100 papers have appeared on the topic since 1987. However, there is still a
long way to go for the testing of artificial intelligence (AI) and knowledge-
based systems to reach the level of conventional software testing. This
chapter sketches the components of & test technology program, which could
substantially advance the science and practice of testing AIl, and presents

some specific suggestions that could be pursued now.
TEST TECHNOLOGY PROGRAM

A test technology program would need to address both the "science” of
testing, by further developing the basis for testing, and the "engineering" of
testing, by developing specific methods and tools for testing. We identify
six specific items.

1. Assess and codify the state-of-the-art in testing. The Al testing
community needs to continue its efforts to get its arms around all
the diverse AI testing activities. This requires a comparison and
contrast of activitles (a) within a particular activity area
(e.g., various static testing approaches), and (b) across areas
(e.g., static testing vs. dynamic testing vs. use of experts vs.
experimencs, etrc.). we can easily imagine task rorces within and
across activity areas, with che result being a major reference
work Ir tme flele fZor yio.a o, come.

2. Develop AI testing laboratories. There need to be empirical
evaluations of alternative testing approaches (and products)
within and across activity areas, as well as of completed expert
gysteirs and cxgert Lysiex ~halls in order to assess their adequa-
cy The f:o oy . 7 ' v up mavernment or commercial labora-
tories {(with no vesred iniercefs, e.g., not at product vendors)
whose mission is to perform such empirical evaluations. It way be
most cost-efficient no have different laboratories specialize in
different areas, although this may be premature at this point.

3. Package AI testing approaches and products for Army personnel. A
significant effort is required to transfer Al testing technology
to Army personnel, and that effort needs to be managed carefully
since items 1 and 2 above have yet to be performed. Elements of
this include a trainlag progras with -ourses and a place where

9-1

testers can get hands-on experience, computerized support, and
texts.

Direct efforts toward assessing the value of integrating Al
testing into the development process. It is often argued that
such integration will result in better Al systems and reduced
development costs, but we are not aware of any empirical studies
testing this hypothesis. This could be the first step of a larger
project to get testers involved earlier in the development process
to ensure that things such as requirements documents are produced
to aid in testing. Managers have to be shown that this involve-
ment is worthwhile, however.

Direct efforts toward assessing the relative erfect of knowledge
elicitation techniques, domain experts, knowledge engineers,
representation schemes, and problem domains on knowledge-base
quality. It seems quite appropriate for the Al testing community
to evaluate the adequacy of the methods that go into building an
expert system, not just the finished products (i.e., systems).
This would be a major undertaking but especially important if Al
is here to stay (e.g., see Adelman, 1989). This would also
include the development of testing techniques for "funny logics"
(4-valued, non-monotonic, possible-worlds, probabilistic) where
appropriate tests do not always exist. Present techniques are
focused primarily on rule-based systems (possibly with extensions
to frames) and techniques may be needed for other types of sys-
tems.

Develop testing tools. The five items above are directed at the
"science" of testing AI. This item is directed at the "engineer-
ing." Tools are needed that get existing methods into the hands
of testers. These include:

. static knowledge-based testing tools—for rule-based logics,
frame-based logics, and other logics;

] a "requirements" generator—an automated system that will
help a tester generate a requirements document from an
examination of the system;

. benchmarks and other testing tools for shells and inference
engines;
. simple dynamic testing tocls (e.g., to keep track of what is

going on during the running of the system)-—again available
for purchase and use;

J comprehensive tools-—such as extensions of the multi-
attribute utility analysis tool;

. integrative tools to tie other tools together.

9-2

SPECIFIC ACTIONS

The following are some of the items that could be pursued immediately to

advance the state of practice of testing AI.

1. Develop an anthology on testing AI. Enough articles have been
produced on the subject that a set of reprints on testing AI and
expert systems, possibly including a few new articles, could be
collected and published as an anthology. This could be done
quickly and at low cost, yet provide a useful volume for testers
and significant recognition of EPG's efforts and support. At some
point, the anthology could be transferred to an electronic medium
such as optical disc storage, and a library aid could be devel-
oped.

2. Develop an automated static-tester using di-graph techniques.
There is a pressing need for static software testers for knowledge
bases. A promising approach is to develop software that will
represent a knowledge base in a directed graph (di-graph). Meural
network techniques can then be applied to identify and locate
logical faults in the knowledge (including higher-order faults
such as multiple link loops).

3. Develop computerized support for calculating d*, B*. Chapter 5
presents a method for assessing the predictive accuracy of a
knowledge base and defines the parameters d* and B*. Computer
programs could be developed for designing tests to collect data
for d* and B* (including determining sample sizes). Additionally,
such a program could automate statistical calculations involved
with d* and B*, automate other aspects of d* and B* calculations
(e.g., calculate increase in accuracy possible from the expert

system), and automa®~ support to interpret results of statistical
tests.

4. Deline » compute:r prageam 0 ‘pplement the MAU hierarchy. As part
of this protlect, we developeu prototype software for implementing
the MAU hierarchy described in Chapter 3. To be most useful to a

tester, this prototype software should be further developed to
provide:

. an automated feature to help a tester build an alternative
assesswmenl | L2mev i w

. context-specific advice of the type prescnted in Chapter 7;
. human-engineered interfaces
- built to commercial (or other) standards,

- more context-specific help,
- built-in tutorials on related topics;

6-1

. ties to other programs, if available or developed (especial-
ly d* and B* statistical analyses and di-graph analyzer).

Extend the compendium of lessons learned. Also as part of this
project (Volume 2), we compiled a compendium of lessons learned
from testing AL systems in the Army. This is a useful assessment
of current practice that can serve to educate testers and to
identify areas where additional work is needed. Specific elements
of the extended compendium include: surveying new systems devel-
opments, extending the coverage of the survey to include addition-
al organizations and systems, and conducting in-depth follow ups
on systems reviewed in the existing compendium. The compendium
could be produced in both paper and hypertext media.

Extend "testbed” activities., The methods described in this
Handbook have not been applied extemsively. The state of practice
can advance from applying these test methods in more depth and to
more systems. Furthermore, it is possible to build an automated
system to collect a historical record of testing including:
project and program characterization, testing techniques used,
assessment of how well the techniques worked, cost of testing,
impact of testing on the schedule, lmpact of testing on the
quality of the system. This history could then form the basis for
a knowledge base of testing.

Develop an automated questionnaire generator. We propose two
questionnaires in this Handbook that will help a tester assess the
usability of an expert system. Further work in this area might
automate the generation of a tailored questionnaire: the tester
might input characteristics of the test environment and the system
being tested, and a computer program would generate a complete
questionnaire. This might then be generalized and linked t¢ other
material, such as a regulation or a Mil Std.

Develop methods and tools to validate confidence weights and
uncertainty factors. Many expert systems utilize a formal system
to represent confidence or uncertainty (e.g., Bayesian, fuzzy set,
or Dempster-Shafer). However, many expert system developers do
not understand confidence weights or uncertainty factors (e.g.,
one survey found many cases of probability assessments outside the
range of O to 1). Tools could be developed to test whether the
knowledge base violates the principles of the confidence or
uncertainty handling system that is used.

Interface with software quality factors. Computer scientists
continue to develop software quality factors for standard proce-
dural software. As shown in Chapter 8, there is a relationship
between these quality factors and attributes for testing expert
systems. This relationship should be explored further with a view
toward advancing both approaches for characterizing good software.

9-4

CHAPTER SUMMARY

The state-of-the-art in testing expert systems has progressed greatly in
the last three or four years from a topic of interest to only a few research-
ers to a field of application involving many software developers and testers.
However, much work is still needed for testing to become a routine part of the

expert system development cycle.

This chapter describes a test technology program of acti ities needed to
advance both the science and the engineering of expert system testing. All of
these activities could be started today, and all will be needed if testing is
to play its proper role in expert system applications. This chapter also
lists nine immediate actions that could be taken to advance the state of
expert system testing generally and the methods described in this Handbook
specifically.

9-5

REFERENCES

AAAT (1988). Proceedings of First AAAI Workshop on Validation and Testing of
Knowledge-Based Systems.

Adelman, L. (1982). "Involving Users in the Design of Decision-Analytic Aids:
The Principal Factor in Successful Implementation." Journal of the Operation-
al Research Society, 33, 333-342.

Adelman, L. (1984). “"Real-Time Computer Support fcr Decision Analysis in a
Group Setting: Another Class of Decision Support Systems." Interfaces, 14,
75-83.

Adelman, L. (1987). *"Supporting Option Generation." Large Scale Systems, 13,
83-91.

Adelman, L. (1989). "Measurement Issues in Knowledge Engineering." IEEE
Transactions on Systems, Man, and Cybernetics, SMC-19, 483-488.

Adelman, L. (1990a). Integrating Evaluation Methods Into the DSS Development
Process. Information and Decision Technologies.

Adelman, L. (1990b). Evaluating Decision Support Systems. Wellesley, MA:
QED Information Sciences.

Adelman, L. and M.L. Domnell (1986). "Evaluating Decision Support Systems: A
General Framework and Case Study."” 1In S.J. Andriole (Ed.), Microcomputer
Decision Support Systems: Design, Implementation, and Evaluation, Wellesley,
MA: QED Information Sciences.

Adelman, L., M.L. Donnell, R.H. Phelps, and J.F. Patterson (1982). "An
Iterative Bayesian Decision Aid: Toward Improving the User-Aid and User-
Organization Interfaces." IEEE Transactions on Systems, Man, and Cybernetics,
SMC-12, 733-742.

Adelman, L. and K. Gates (1983). Evaluation of the Duplex Army Radio/Radar
Targeting Aid (DART) (Report 83-84). New Hartford, NY: PAR Technology
Corporation,

Adelman, L., F.W. Rook, and P.E. Lehner (1985). "User and R&D Specialist
Evaluation of Decision Support Systems: Development of a Questionnaire and
Empirical Results.” [EEE Transactiocns on Systems, Man, and Cybernetics, SMC-
15, 334-342,

Adelman, L., P.J. Sticha, and M.L. Donnell (1984). "“The Role of Task Proper-
ties in Determining the Relative Effectiveness of Multiattribute Weighting
Techniques." Organizational Behavior and Human Performance, 33, 263-262.

Adelman, L., P.J. Sticha, and M.L. Donnell (1986). "An experimental inves-
tigation of the relative effectiveness of two techniques for structuring
multi-attributed hierarchies." Organizational Behavior and Human Decision
Processes, 37, 188-196.

Adelman, L. and J.W. Ulvila (in press). "Evaluating Expert System Technol-
ogy." In S.J. Andriole and S.M. Halpin (Eds.), Information Technology For
Command and Control. New York: IEEE Press.

Andriole, S.J. (1989). KHandbook for the Design, Development, Evaluation, and
Application of Interactive Military Decision Support Systems. Princeton, NJ:
Petrocelldi.

Bahill, A.T., P.N. Harris, and E. Senn (1988). "Lessons Learned Building
Expert Systems." Al Expert, 3, 36-45.

Bailey, D.E. (1971). Probability and Statistics: Models for Research. New
York: Wiley & Sons.

Bailey, J.E., and S.W. Pearson (1983). "Development of a Tool for Measuring
and Analyzing computer User Satisfaction." Management Science, 29, 530-545.

Baroudi, J.J. and W.J. Orlikowski (1988). "The Problem of Statistical Power
in MIS Research." MIS Quarterly, 87-106.

Barth, S., D. Sobik, and H. Coyle (1983)., The Users Guide for the Duplex Army
Radio/Radar Targeting Aid (DART). New Hartford, NY: PAR Technology Corpora-
tion.

Beizer, B. (1984). Software System T:sting and Quality Assurance. New York:
Van Nostrand Reinhold.

Bellman, K.L. and E.0. Walter (1988). "Analyzing and Correcting Knowledge-
Based Systems Requires Explicit Models." Proceedings of the AAAI-88 Workshop
on Validation and Testing Knowledge-Based Systems. St. Paul, MN: August 20,
1988.

Bourgeois, L.J. and K.M. Eisenhardt (1988). "Strategic Decision Processes in
High Velocity Environments: Four Cases in the Microcomputer Industry."
Management Science, 34, 816-835.

Brier, G. (1950). “"Verification of Forecasts Expressed in Terms of Probabil-
ity." Monthly Weather Review, 75, 1-3.

Brown, R.V., A.S. Kahr, and C.R. Peterson (1974). Decision Analysis for the
Manager. NY: Hot, Rinehart & Winston.

Buede, D.M., and L. Adelman (1987). Decision Support Systems: Design, Use,
and Evaluation. Coursebook for seminar sponsored by the U.S. Army Logistics
Management Center, Fort Lee, VA.

Campbell, D.T. (1984). “"Foreword." 1Inm R.K. Yin (Ed.), Case Study Research:
Design and Methods. Beverly Hills: Sage Publications.

Campbell, D.T. and D.W. Fiske (195%). *“Convergent and discriminant validation
by the multitrait-multimethod matrix." Psychological Bulletin, 56, 81-105.

Campbell, D.T. and J.C. Stanley (1966). Experimental and Quasi-Experimental
Designs for Research. Chicago, IL: Rand McNsally,

R-2

Casey, J. (1989). “Picking the Right Expert System Application.” AI Expert,
4(9), 44-47,

Cats-Baril, W.L. and G.P. Huber (1987). '"Decision Support Systems for Il1l-
Structured Problems: An Empirical Study."™ Decision Sciences, 18, 350-372.

Chandrasekaran, B. (1983). "On Evaluating Al Systems for Medical Diagnosis."
Al Magazine, 4, 34-37.

Chapnick, P. (1988). “"When We Look Back." AI Expert, 3(12), 5-6.

Cholawsky, E.M. (1988). "Beating the Prototype Blues." Al Expert, 3(12), 42-
49,

Cochran, W.G. and G.M. Cox (1957). Experimental Designs (2nd edition). New
York: Wiley.

Cohen, J. (1965). "Some Statistical Issues in Psychological Research.” In
B.B. Woleman (Ed.), Handbook of Clinical Psychology. NY: McGraw-Hill.

Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences
(revised edition). NY: Academic Press.

Cohen, M.S., and A.N.S. Freeling (1981). The Impact of Information on
Decisions: Command and Control System Evaluation (Technical Report 81-1).
Falls Church, VA: Decision Science Consortium, Inc.

Constantine, M.M. and J.W. Ulvila (1990). "Testing Knowledge-Based Systems:
The State of Practice and Suggestions for Improvement." Expert Systems with
Applications, 1, 237-248.

Cook, T.D. and D.T. Campbell (1979). Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Chicago, IL: Rand McNally.

Culbert, €. and R.T. Savely (1988). "Expert System Verification and Valida-
tion." Proceedings of AAAI-88 Workshop on Validation and Testing Knowledge-
Besed Systems. St Faur, MN. Aug. 3. 19228

Davis, K. (1989). “Expert Systems: How Far Can They Go." AI Magazine, 10,
65-77.

Dawes, R.M. and B. Corrigan (1974). "Linear Models in Decision Making."
Psychological Bulleuvis, &1, 35 13¢.

Delbecq, A.L., A.H. Van de Ven, and D H. Gustafson (1975). Group Techniques
for Program Flanning: A Guide to Nominal Group and Delphi Processes.
Glenview, IL: Scott, Foresman, and To

DeMillo, R.A., W.M. McCracken, R.J. Martin, and J.F. Passaiiume (1987).
Software Testing and Evaluation. Menlo Park, CA: The Benjamin/Cummings
Publishing Co.. Inc.

DOD-STD-1679A: Software Development (Section 5.3, Programming Standards).
February 1983.

DOD-STD-2167: Defense System Software Development (Section 30.3, Detailed
Requirements section of General Design and Coding Standards). 4 June 1985.

Ebert, R.J. and T.E. Kruse (1978). "Bootstrapping the Security Analyst."
Journal of Applied Psychology, 63, 110-119.

Edwards, W. (1977). "Use of Multiattribute Utility Measurement For Social
Decisions.® 1In D.E. Bell, R.L. Keeney, and H. Raiffa (Eds.), Conflicting
Objectives in Decisions. New York: Wiley.

Efron, B. (1982). The Bootstrap, the Jackknife and Other Resampling Plans.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

Eils, L.C. and R.S. John (1980). "A Criterion Validation of Multi-Attribute
Utility Analysis and of Group Communication Strategy.” Organizational
Behavior and Human Performance, 25, 268-288.

Einhorn, H.J. and R.M. Hogarth (1975). "Unit Weighting Schemes of Decision
Making." Organizational Behavior and Human Performance, 13, 171-192.

Einhorn, H.J. and W. McCoach (1977). "A Simple Multi-Attribute Procedure for
Evaluation." Behavioral Science, 22, 270-282.

Eliot, L.B. (1989). "Mass Market Applications: They’re Here." AI Expert,
4(12), 9-14.

Fairley, R.E. (1983). Scftware Engineering Concepts. New York: McGraw-Hill.

Forsythe, D. and B. Buchanan (1989). "An Empirical Study of Knowledge
Elicitation: Some Pitfalls and Suggestions." IEEE Transactions on Systems,
Man, and Cybernetics, SMC-19, 435-442.

Franklin, W.R., R. Bansal, E. Gilbert, and G. Shroff (1988). "Debugging and
Tracing Expert Systems." International Hawaii Conference on System Sciences.

Gaschnig, J., P. Klahr, H. Pople, E. Shortliffe, and A. Terry (1983).
"Evaluation of Expert Systems: Issues and Case Studies.” 1In F. Hayes-Roth,

D.A. Waterman, and D.B. Lenat (Eds.), Building Expert Systems. Reading, MA:
Addison-Wesley.)

Gelperin, D. and B. Hetzel (1988). "The Growth of Software Testing."
Communications of the ACM, 31, 687-695.

Gilbert, E. (1989). "Static Analysis Tools for Expert Systems." Proceedings
of Test Technology Symposium II,

Goldberg, L.R. (1970). "Man Versus Model of Man: A Rationale, Plus Some
Evidence, for a Method of Improving Clinical Inference." Psychological
Bulletin, 73, 422-432.

Gould, J.D. and C. Lewis (1985). “"Designing for Usability:. Key Principles
and What Designers Think." Communications of the ACM, 28, 300-311.

Green, D., and O. Swets, O. (1966). Signal Detection Theory and Psychologies.
NY: John Wiley.

R-4

Gullikser K H. (1950). Theory of Meatal Tests. NY: Wilev and Sons.

Hamiet, . (1988). ‘'sp.cial Secticy . - Fuo-w To_ uiwg * rommmications of
the ACM, 31, 662-667.

Hamond, K.R. (1948). "Subject and Object Sampling: A Note." Psychological
Bulletin, 45, 330-533.

Hammond, K.R., R.M. Hamm, and J. Grassia {1986). "GCeneralizing Over Condi-
tions By Combining the Multitrait-Multimcthod Matrix and the Representative
Design of Experiments." Psychological Bulletin, 100, 257-269.

Hammond, K.R., R.M. Hagm, J. Grassia, and T. Pearson (1987). 'Direct Com-
parison of the Relative Efficacy of Intul e and Analytical Cognition in
Expert Judgment. ILEE Transactlons on Systems, Man, and Cybernetics, SMC-17,
753-770.

Hammond, K.R., T.R. Stewart, B, Brehmer, and D.0. Steinmann (1975). *"Social
Judgment Theory." M.F. Kaplan and S. Schwartz (Eds.), Human Judgment and
Decision Processes. New York: Academic Press.

Harmon, P., R. Maus, and W. Morrissey (1988). Exper. Systems Tools and
Applications. New York: John Wiley & Sons.

Harrison, P.R. (1989). "Testing and Evaluation of Knowledge-Based Systems."
In J. Liebowitz and D.A. De Salvo (Eds.), Structuring Expert Systems: Domain,
Design, and Development. Englewood Cliffs, NJ: Yourdon Press.

Hays, W. (1972), Statistics for the Social Sciences {2nd Edition). NY:
Holt, Rinehart and Winston.

Hayes, P.J. (1981). "The Logic of Frames." B.L. Webber and N.J. Nilsson
(Eds.), Readings in Artificial Intelligence. Palo Alto, CA: Tioga, 451-458.

He Varzan., DL (1287). "An Empirical Couwvarison of Three Inference Methods.”
roooceeding s of th Tmirg Woerkshop Ln o Jnceviawnty in Artificial Intelligence,
134169,

Hetael, w. (1%84). 1o Complete Guide to Software Testing. Wellesley, MA:
QED Information Sciences, Inc.

Hice, G.F., ¥W.S, Turs r. and 1..F, Cashwell (1978). System Development
Methodoioyxy. New oo wLT e L

Hofiman, P.J. (1960 "The Paramerii::ic Rerresentation ef Human Judgment.”
tsywhclogical Bulletin, 5/, 116-131.

Hoffman, P.J., P. Slovic, and L G, Pacer (1968). "An snaivsis-of-Variance
Model for the Assessment of Configural Cue Utilization in {'inical Judgment.
Psychological Bulletin, 69, 338-349.

Horarth, R.M. (1Y8/;. Juagmenc and Cheice. NY: Wiley-Interscience.

Huber, G.P. (15980). ianagerial Locision Haking Sleunview TL: Scott,
Foresman, & Corpo-~r.

Huber, G.P. (1986). "The Decision-Making Paradigm of Organizational Design."
Management Science, 32, 572-589.

Hurst Jr., E.G., D.N. Ness, T.J. Gambino, and T.H. Johnson (1983). "Growing
DSS: A Flexible, Evolutionary Approach."” In J.L. Bennett (Ed.), Building
Decision Support Systems. Reading, MA: Addison-Wesley Publishing Company.

IJCAT (1989). Preliminary Proceedings of I[JCAI-89 Workshop on Verificstion,
Validation, and Testing of Knowledge Based Systems.

JCMPOINST 8020.1: Independent Scitware Nuclear Safety Analysis (Change 2,
Appendix F, Section 3.6 (3), Specification and Design Audit ar< analysis) (3
March 1984).

Kahneman, D., P. Slovic, and A. Tversky (Eds.) (1982). Judgment under
Uncertainty: Heuristics and Biases. NY: Cambridge University Press.

Kahneman, D. and A. Tversky (1984). "Choices, Values, and Frames." American
Psychologist, 39, 341-350.

Kalagnanam, J., and M. Henrion (1988). "A Comparison of Decision Analysis and
Expert Rules for Sequential Diagnosis."” Proceedings of the Fourth Workshop on
Uncertainty in Artificial Intelligence, 205-212.

Kang, Y., and A.T. Bahill (February 1990). "A Tool for Detecting Expert
System Errors." Al Expert, 5{(2), 46-51,

Kaplan, B. and D. Duchon (1988). "Combining Qualitative and Quantitative
Methods in Information Systems Research: A Case Study."” MIS Quarcerly, 12,
571-586.

Keeney, R.L. ~nd H. Raiffa (1976). Decisions with Multiple Objectives. New
York: Wiley.

Keim, R.T. and R. Janaro (1982). *"Cost/Benefit Analysis of MIS." Journal of
Systems Management, September 1982, 20-25.

Kelly, C.W. (1979). Program Completion Report: Advanced Decision Technology
Program (1972-1979) (TR 79-3-93). McLean, VA: Decisions and Designs, Inc.

Keyes, J. (1989). *“The Citibank Pension Expert." Al Expert, 4(6), 61-65.
Kirk, D.B. and A.E. Murray (1988). Verification and Validation of Expert
Systems for Nuclear Power Applications. McLean, VA: Science Applications

International Corporation.

Klein, G.A. and C. Brezovic (1988). “Evaluation of Expert Systems." 1In §.J.
Andriole and G.W. Hopple (Eds.), Defense Applications of AI. Lexington Books.

Kraemer, H.C. and S. Thiemann (1987). How Many Subjects?: Statistical Power
Analysis in Research. Beverly Hills. CA: Sage Publications.

Lay, P.M.W. (1985). “Beware of the Cost/Benefit Model for i5 Project Evaiua-
cion." Journal of Systems Management, June 1985, 30-35.

R-6

Leddo, J.M., and M.S. Cohen (1987). "A Cognitive Science Approach to Elicita-

tion of Expert Knowledge. Proceed:i.gs i the 15¢. .. lrectors of
Laboratories Corferei.. . Miiee - - Ag T 0t s Trroernpctonal
Corporation.

Lee, A.S. (1989). A Scientific Methodolngy for MIS Case Studies." MIS
Quarterly, 13, 33-50.

Lehner, P.E. (1989). "Toward an Empirical Approach to Evaluating the Knowledge
Base of an Expert System." IEEE Transactions on Systems, Man, and Cybernetics,
SMC-19, 658-662.

Lehner, P.E. and L. Adelman (in press). "Behavioral Decision Theory and Its
Implications For Knowledge Engineering." Knowledge Engineering Review.

Lehner, P.E., T.M. Mullin, and M.S. Cohen (1989). "When Should a Decision Maker
Ignore the Advice of a Decision Aid." Proceedings of the 1989 Workshop on
Uncertainty in Artificial Intelligence.

Lehner, P.E. and J.W. Ulvila (1989). A Note on the Application of Classical
Statistics to Evaluating the Knowledge Base of an Expert System. Reston, VA:
Decision Science Consortium, Inc.

Lehuer, P.E., and D.A. Zirk (February 1987). “Cognitive Factors in User/Expert
System Interaction. Human Factors, 29(1), 97-109.

Levi, K, (1985). "A Signal Detection Framework for the Evaluation of Proba-
bilistic Forecasts." Organizational Behavior and Human Performance, 36, 143-166.

Levi, K. (1989). “"Expert Systems Should be More Accurate than Human Experts:
Evaluation Procedures from Human Judgment and Decisionmaking.” IEEE Transactions
on Systems, Man, and Cybernetics, SMC-19, 647-657.

1ibby, R. and B.L. Lewis (1977). "Human Information Processing Research in
frooeurting.? Accounting, Organizacions, and Society, 21, 245-268.
‘IEJ0Wles, - . ERT seedal Ape gt Traluating Experc Systems." Expert

Sysrems, 5. 8095,

Likert, R. (1932). "A Technique for the Measurement of Attitudes. Arch.
Psychol., 140.

Marcot, B. (19bs}. " i:li..g - . i . Y:dge Base." Al Expert, 2, 42-47,
Markus, M. L. (1983) "Fower, Poiirics and MIS Implementation.” Communications

of the ACM, 26, 430-444

Markus, M.L. (1984). Systems in Organizations: Bugs and Features. Marshfleld,
Ma. Pltman Publishing, Inc.

Mazen, A., L. Graf, C. Kellogg, and M. Hermmasi (1987). “Statistical Power in
Contemporary Management Research." Academy of Management Journal, 30, 369-380.

McCain, L.J. and R. McCleary (1979). “The Statistical Analysis of the Simple
Interrupted Time-Series Quasi-Experiment.” In T.D. Cook and D.T. Campbell

(Eds.), Quasi-Experimentation: Design and Analysis Issues for Field Sectings.

Chicage, IL: Rand McNally.

McCall, J. and M. Matsumoto (1980). Software Qualitv Metrics Enhancement:
Volumes I-II (RADC-TR-80-109).

Medlin, S.M., and L. Adelman (198%). “Automated cost-benefit analvsis. A
powerful decision support tool for HRD managers.” Froceedings of the Tweltth
National Conference on Teaching Public Administration, Charlocttesville, Va:
March 14-16, 377-392.

MIL-STD-1679: Weapon System Software Development (Section 5.3, Programming
Standards). 1 Dec. 1978.

Mortimer, H. (1988). The Logic of Induction (English edition). Chicester,
England: Ellis Horwood Limited.

Nazareth, D.L. (1988). An Analysis of Techniques for /erification of Logical
Correctness in Rule-Based Systems (Ph.D. Dissertation). Case Western Reserve
University.

Nazareth, D.L. (1989). "Issues in the Verification of Knowledge in Rule Based

Systems." International Journal of Man-Machine Studies, 30, 255-271.

Newquist, H.P. II1 (1988). “Talss from the Hearth of AI." Al Expert, 3(12), .
61-63.

Nguyen, T.A., W.A. Perkins, T.J. Laffey, and D. Pecora (1987). "Knowledge
Base Verification.“ AI Magazine, 8, 69-75.

Nilsson, N, (1980). Principles of Artificial Intelligence. Morgan Kaufmann.

Noble, D. (1989). "Schema-Based Knowledge Elicitation for Planning and
Situation Assessment Aids." IEEE Transactions on Systems, Man, and Cyber-
netics, SMC-19, 473-482,

OConnor, M.F. (1989). "Planning for Integrated System Evaluation: An
Application to SDI." 1In S.E. Johnson and A.H. Levis (Eds.), Science of
Command and Control: Coping With Complexity (Part I1). Fairfax, VA: AFCEA
International Press.

Q'Connor, M.F. and W. Edwards (1976). On Using Scenarios in the Evaluation of
Complex Alternatives (DDI/DT/TR-76-17). Mclean, VA: Decisions and Designs,
Inc.

0'Keefe, R.M., 0. Baleci, and E.P. Smith (1987). "Validating Expert System
Performance." IEEE Expert, 2, 81-90.

O‘Keefe, R.M. and O'Leary, D.E. (1990). The Verification snd Validation o
Expert Systems Authors’ mimeo.

Pitz, G.F. and J. McKillip (1984). Decision Analysis for Program Managers. .
Beverly Hills, CA: Sage Publications.

R-b

Press. L. (1989). "Expert System Benchmarks."” IFEE Experc, 4, 37-44,

Pressman, R.S. (lvy8zj. oSuviiwdre i gaavo. A ool e e Anprogeh . New
York: McGraw-Hill.

Reichardt, C.S. (1979). “The Statistical Analysis of Data from Nonequivalent
Group Designs." 1In T.D. Cook and D.T. Campbell (Eds.). Quasi-Experimenra-
tion: Design and Analysis Issues for Field Settings. Chicago,IL: Rand
McNally.

Riedel, S.L. and G.F. Pitz (1986). "Utilization-Oriented Evaluation of
Decision Support Systems." IEEE Transactions on Systems, Man., and Cyber-
netics, SMC-16, 980-99%6.

Rockmore, A.J., L. Hemphill, R.A. Riemenschneider, M.L. Donnell, and K. Gates
(1982). Declision Aids for Target Aggregation: Technology Review and Decision
Aid Selection (PAR Report #82-32). New Hartford, New York: PAR Technology
Corporation.

Rook, F.W. and J.W. Croghan (1989). "The Formulation of Knowledge Acquisition
Methods: A Systems Engineering Conceptual Framework." IEEE Transactions on
Systems, Man, and Cybernetics, SMC-19, 586-597.

Rushby, J. (1988). Quality Measures and Assurance for Al Software (NASA
Contractor Report 4187). Washington, DC: National Aeronautics and Space
Administration (Code NTIT-4).

Saaty, T.L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

Sage, A.P. (1986). "An Overview of Contemporary Issues in the Design and
Development of Microcomputer Decision Support Systems." In S.J. Andriole
(Ed.), Microcomputer Decision Support Systems: Design, Implementation, and
Evaluation. Wellesley, MA: QED Information Sciences.

wew, ALl ownd € 7 Wdhite YIT (1950). Fvaluation of Two DLI Decision Aids
Oos2loped ror Duc:Ll3G (Decument No. 33757-wils-RU-00). Falls Church, VA:
“0 Deterza s} Vv Systoms Uroup

Scheln, E.H. (1370). urganizational Psychology. Englewood Cliffs, NJ:
Prentice-Hall, 1970.

shafer, G. {(1978). A Marhematical Theory of Evidence. Princeton, NJ:
Princeton University .iuse.

Shank, R.C. and R P. Abelson (1977, Serinrs, Plans, Goals, and Understand-
ing. An Inquiry into Human Knowledge Structures. Hillsdale NJ: Lawrence
Erlbaum Asszociates.

Sharda, R., S.H. Barr, and J.C. McDonnell (1988). "Decisior Support System
Effectiveress: A Review and an Empirical Test." Management Science, 34, 139-
139

Sheppard, J. {November 1989). "Ar Approach to Verifying Expert System Rule
Bases." Proceedings of the 1389 Incernational Conference on Systems, Man, and

Cybernecics.

R-S

Shycon, H.N. (1977). rall Around the Model-—Perspective on MS Applications.”
Interfaces. 7, 40-43,

Simon, H.A. (1950). The New Scieace of Managemen: lecisions. New York:
Harper & Row.

Sizemore, N.L. (1990). "Test Technologies for Knowledge-Based Systems: A
Summary."“ Proceedings of Test Technology Symposium LIT Aberdeen. MD: U.S.
Army Test and Evaluation Command.

Slagle, J.R. and M.R. Wick (1988). "A Method for Evaluation Candidate Expert
System Applications." AI Magazine, 9, 44-53.

Smith, D.L. (1988). “"Implementing Real World Expert Systems." Al Expert,
3(12), 51-57.

Software Quality Engineering Handbook (1984). Draft Technical Bulletin TB-18-
102-2.

Spetzler, C.S. and C.A.S. Stael von Holstein, (1975). "Probability Encoding
in Decision Analysis." Management Science, 22, 340-358.

Stachowitz, R.A., C.L. Chang, and J.B. Combs (1988). “"Research on Validation
of Knowledge-Based Systems." Proceedings of the AAAI-88 Workshop on Valida-
tion and Testing KFnowledge-Based Systems. St. Paul, MN: Aug. 20, 1988.

Stichowitz, R.A., and J.B. Zeomb: {1387}, "Validaticr of Expert Systeas.”
Proceedings, Hawaii International Conference on System Sciences, Kong, HI.

Stewart, T.R., W.R. Moninger, J. Grassia, R.H. Brady, and F.H. Merrem (1988).
Analysis of Expert Judgment and Skill in a Hail Forecasting Experiment.
Boulder, CO: Center for Research on Judgment and Policy at the University of
Colorado.

Tong, R.M., N.D. Newman, G. Berg-Cross, and F. Rook, (1987). Performance
Evaluation of Artificial Intelligence Systems. Mountain View, CA: Advanced
Decision Systems.

Ulvila, J.W. and Chinnis, J.0., Jr. (in press). Decision analysis for R&D
resource management. In D.F. Kocaoglu (Ed.), Management of R&D and engineer-
ing.

Ulvila, J.W., P.E. Lehner, T.A. Bresnick, J.0. Chinnis, Jr., and J.D.E. Gumula
(1987). Testing and Evaluating C3I Systems That Employ Artificial Intel-
ligence. Reston, VA: Decision Science Consortium, Inc.

von Winterfeldt, D. and W. Edwards (1986). Decision Analysis and Behavioral
Research. NY: Cambridge University Press.

Watson, S. and D.M. Buede (1987). Decision Synthesis: The Principles and
Practice of Decision Analysis. Cambridge, England: Carbiidge Univiisiny
Press.

Weiss, J.J. and G.W. Zwahlen (1282). "The Structured Decision Conference. A

Gase Study." Hospitual and Healtl Services Administration, [/, ‘v-id%.
» »

R-10

Weitzel, J.R. and L. Kerschberg (1989). "A System Levelopment Methodology for
Knowledge-Based Systems." IEEE Transactiuns on Sys..us, .., and Cybernetics,
SMC~19, 398-605,

Winkler, R. (1972). Introduction to Bayesian Inference and Decision. NY:
Ho:t, Rinehart and Winston.

Wohl, J.G. (1981). “"Force Management Decision Requirements for Air Force
Tactical Command and Control." IEEE Transactions on Systems, Man, and
Cybernetics, SMC-11, 618-639.

Wolfgram, D.D., T.J. Dear, and C.S. Galbraith (1987). Expert Systexs for the
Technical Professional. New York: Wiley.

Yin, R.K. (1984). case Study Researci: Design and Methods. Beverly Hills:
Sage Publications.

Yu, V.L., L.M. Fagan, S.M. Wraith, W.J. Clancey, A.C. Scott, J.F. Hanigan,
R.L. Blum, B.G. Buchanan, and S.N. Cohen (1979). “Antimicrobial Selection by
a Computer: A Blinded Evaluation by Infectious Disease Experts." Journal of
the American Medical Association, 242, 1279-1282.

Zimmerman, H.J. and P. Zysno (1980). "Latent Connectives in Human Decision
Making." Fuzzy Sets and Systems, 4, 37-51.

APPENDIX: QUESTIONNAIRES

This appendix contains generic questionnaires that can be used bv a
tester to elicit judgments from subjects on the performance and usability of
an expert system. These questionnaires have been decsigned using the guide-
lines described in Chapter 3, and are directed toward assessing attributes in
the MAU framework for testing and evaluating expert systems that is described

in Chapter 3, using the 100-point scale that is also described in Chapter 3.

Two types of questionnaire are included. The first uses a Likert-type
scale for responses to agreement or disagreement with statements. At least
two questions, which appear in different places and are phrased differently,
are included for each attribute. These responses must be converted to utility
scores by the tester. VWe expect that a subject should need 15 to 30 minutes
to complete this questionnaire. Figure A-1 shows the relationship between the
questions and the hierarchy of attributes. The second questionnaire asks the
subject to make judgments on a utility scale for fifteen attributes. This
scale is described, and instructions are also given on how to fill out the
questionnaire. Subjects will probably need more time to complete this
questionnaire. If resources permit, we recommend the use of both guestion-

naires.

Both questionnaires should be customized for each expert system being

~uii. This can be done by replacing the following generic nhrases with

srocifie pure vbov av thoy annery. The generic phrases are underlined
rnroughout Jhe ywerilonnalres Lo aid o 77 is chauge.

Generic Phrase Replace With
"the erpert systen” bvone o of the expert system being tested
"crnarft system’'s rask" a descriotion of the function that the expert

svstem perfeorms

"the organization" the name of the organization that will use the
expert system

INIDNYLS
S3HNAID0HA
WNOI LY ZINV D0 6¢
40 1OVdN @ YE'EL
ONINIVE L/STUNS
O HOM ITALS a4
HOM R LOVIVE @ €1°9'2

W3 1SAS 143dX3

FOVH UNO!HLVINISIYd

ﬁ 1%l
| TYNOLLYZINYOHO

swaisAg Ladx3z Hupenjeay pue Bugise] 10}
wiomawel4 [iYIN 9Yl pue aljeuuonsanp ayl uaamiag diysuoneiey :1-y ainbig

40 ADNIHVISNYHL @ 8Z'SL

40 AJVNOIOV @ Z¥'6L

INAINO/ENANE @ 2¥'SH LE'IE'YT'8L'Y

WNIHOS
NOILVIN3ISIHC3Y

40 ALTNBYIA3DOY @ BY'EZ

S1INS3Y

40 ALNNBVLdIO0OV @ OV’ T

NOILOVHILNI
INTHOVIWN Y

40 ALNIGV1dI00V @ 0842
3SN 30 3Sv3 @ M'9e'0Z
3ONIAINOD @ €'t

g3sNs3yny 34 @
3SN JO HINNVA @
45N JO INIIX3 @

_ sr2L'S

]

1

[3onwwHOsb3d |

I os'ozs |

WALSAS HILNINOD @

SON3 avag -

NOISNIONOD J18VHOVIHNN -

S3IN VA 3INBIHLIY WOITN -

S3INTVA

FUNAIHLLY IONIYIIIHUND -
SSINILIEWOD WIDOT @

$371NY YYINJWO -

S3INY ONLLDITINOD -

S3INY A3NNSBNS -

S$371NY INVONNG3Y -
ADN3ILSISNOD WOIDO1 @

a4
[nouvnviaxa | Ny oos. _ NOINIO [3wevaussso |
se11 A | o ~ t_
3svEe
JDAIMONN 40 ALTUEVIIQOW -
SININIHINDIY TINS - 3D2HNOS 40 ADVNODIAY -
NCLYININNDOQ - ALMBVY1d3D0V
SININUNOIY VIVA - NOLLYINIS3HIIH FOAITMONA -
S1¥WWOd - SINY 40 ADVHNOOV -
NOILVUDILINI N31SAS @ S10V4 40 AOVHNDOOV -
SHOYH3 1INdLOUNNI - AOVHNDOV 3ALLDIQ3Hd @
ONITANVH NOILYAVHD3J - SNOILLVUIWIT
ONIdWNT3SN 3YNLV3Y - 3DQ3MONN OMJIIN3QI -
SNOSYIY H0 ALTYRD @ 848 (IHYMABVH) ALITNBYAYD - Q3Y3A0D A13L3WNCD
SHIMSNY 40 ALIVID @ 6201 svig @ (IYVYMOHVYH) ALTIEYII3Y - NOISNTONCONOWLYIIIdAY -
NSV HSITdWODIV OL JNIL @ $ZE ADVHNOOV @ SINIWIHIND3Y 30VdS - SiNdNI G3HIS30 TV -
3N1L 3SNOJSIH @ ov'el g3ads @ INELNNY - SSINTLITINOD TYNOILONNS @
INILJN-L3S -
FOVSN HILNIWOD @
[inawoanr | HLAKL ONAOYO ALIRVINOd - [ivawoo |
NDIS3Q -

— JWNLONHLS _

L

1

[

[3onuss. | [awona3onauasm| [3sve 3oa3mmony|

|

_

]

TIVHIAO

Name:

Time Started this Questionnaire:

Time Finished this Questionnaire:

Sequence:

Date:

QUESTIONNAIRE

The purpose of this questionnaire is 10 obtain your perceptions concerning the value of the ¢xpert

system in performing the expert system’s task for which the sysicm has thus far been developed. A

number of statements are made and each is followed by an 11-poini scale on which you are to indicate
the extent to which you agree or disagree with the statement. Please simply mark an X at the
appropriate point on the scale. If you cannot answer a question, put an asterisk(*) in the right-hand
margin beside the guestion. If you would like to comment about your answer, please do so tn the space

provided to the right of the question. Comments are helpful, but they are not required.

There are 50 questions in the questionnaire. We have to ask you so many questions in order to get 8
complete and accurate picture of your perceptions concerning the strengths, weaknesses, and potential
value of the expert system. You should be able to complete the questionnaire within 15 10 30 minutes,

but please take as much time as you need to carefully and accurately respond 10 each question.

1. I have a lot of confidence in the expert system.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
¢ 1 2 3 4 5 6 1 8 9 10
2. Using the expert system will significantly decrease the workload required by personnel performing
tne expetl swiien's wan.
Comments
Very Neither Very
Strongly isagree Suongly
Disagree Nor Agree AL

0 1 2 3 4 5 6 7 8 9 10

The expert system's task can be performed faster using the expert system.

Comments

Very Nert.. Very
Strongly Yoen e Strongly
Dissgree «wor Agree Agroe

[i 2 3 4 b 6 7] 9 10

The expert system’s input displays are acceptable.

Comments
Very Neither Very
Strongty Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

In general, I am pleased with the expert system’s overall level of performance.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

14 1 2 3 4 s 6 7 8 9 10

On the average, the expert system nicely matches the background and skills of the organization’s
personnel performing the expert system's task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 b 6 ?] 9 10

1o

The expert system will disrupt communication or the flow of data among personnel performing
the expert system'’s wask.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
4 1 2 3 4 N 6 i 8 9 10
[n general, the expert system’s overall usability is good.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

The expert system would have an unacceptable impact on organizational structure and
procedures.

_cmments
Very Nty Very
Strongly sagree Strongty
Disagree nor Agree Agree
3 1 3 1 5 s 7 8 9 1w

The expert sysiem ignores situations, data, or predictions that are important when performing the
expert system's task.

Comments
Very Neither Very
Strongly Disagree Strongly
Pisagree Nor Agree Agree

0 1 2 1 4 bl 6 7 8 9 10

1L

12.

13.

14,

The expert system matches the work style, workload, skills, and training of the people who will

use it.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 2 3 4 s 6 7 8 9 10
[think the expert system’s overall level of performance is unacceprabie.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 H 2 3 4 5 6 7 8 9 10

It would be difficult to train personnel to use the expert system effectively.

Comments
Very Neither Very
Strongly Disagree Strongty
Disagree Nor Agree Agree

I could produce higher quality results working with the expert system than without it.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 s 6 7 8 9 10

. 15. 1 do not fully understand how the expert system works.

S .. Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 s 6 7 8 9 10

16, In general, the time between my input and the system’s response is fast and quite acceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

17. The expert system’s built-in expertise is worthless for the organization's personnel performing the
expert system’s task.

Comments
Very Neither Very
songiv Disazree Strongty
- SAGTTE RNoT o SAyree AL
I R A B R B
18. The experi systein’s inputl aad output displa,s aic not very good.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

.5.

19.

20.

21.

22.

The presentation of the expert system's reasoning process is adequatc.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 2 3 4 5 6 7 8 9 10
[find the expert system difficult to use.
Ccomments

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

The expert system does not split the tasks between the machine and the user appropriately.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
o0 1 2 3 4 S 6 717 8 9 10
I find the expert system’s results acceptable.
Comments

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 i 2 3 4 S5 6 7 8 9 10

24.

26.

The _expert system uses an objectionable scheme for representing and accessing knowledge.

— o _Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 2 3 4 5 & 7 8 9 10
The expert system’s output displays are acceptable.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagrec Nor Agree Agree
0 1 2 3 4 5 6 7 8 9 10
The use of the expert system will slow down the expert system's task.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 7 RIS TR Y 1o

Regardless of whether thz expert system performs well or not, I do not like using it.

Comments
Very Neither Very
Sirongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 s 6 7 8 9 10

.-

27.

29.

30.

The expert system does nor match the knowledge of personnel performing the expert system’s
task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 s 6 7 8 9 10

The problem-solving logic used by the expert system is transparent to the user.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 2 3 4 S 6 7 8 9 10
The expert system fails to give high-quality answers.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

The expert system has been designed so that the operator and the system are doing the tasks for
which they are best suited.

Comments
Very Neither Very
Strongly Disagrec Strongly
Disagree Nor Agree Agree

-8.

3.

33.

The expert system’s interface with the user is very good.

__Comments
Very Neither Very
Strongly Disagree Strongty
Disagree Nor Agree Agree

0 1 2 3 4 S5 6 71 8 9 10

The expert system has a broad enough scope of application to be useful in performing the expert
system’s task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 S5 6 7 8 9 10

The expert system will increase the amount of work required to perform the expert system’s task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
4] 1 2 3 4 5 6 7 8 9 10
The expert system would improve communication.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 g8 9 10

9.

37.

38.

3s.

The expert system will adversely impact the work style, workload, skills, or training of those

personnel it was designed to support.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

Once I have completed training and gained familiarity with the system, I can easily and effectively

use it.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 2 3 4 5 6 7 8 9 10
The mechanics of using the expert system causes problems in data entry.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

o 1 2 3 4 5 6 7 8 9% 10

[think that the expert system gives high-quality justifications for its answers.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagrec Nor Agree Agree

41.

42.

The expert system is well-matched to the organizational structure and characteristics of the
organization.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 Z 3 4 5 6 7 8 9 10
After using the expert system, I find its results to be unacceptable.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 s 6 7 8 9 10

The use of the expert system would reduce the amount of time required to train new staff
members to perform the expert system’s task.

Comments
Very Meither Very
Merongty 1igegrer Strongly
i disagree *or Agre= Agoee
0 (TR YT T8 T 8 9 o

The expert system does not help the operator understand how different characicristics of the
situation might result in different outputs.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

43,

45,

I am apprehensive in taking actions based on the expert system.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0o 1 2 3 4 S 6 7 8 9 10

Once I have completed training and gained familiarity with the expert system, [can easily and
effectively use it without consulting the documentation or members of the deveiopment team.

Comments
Very Neither Very
Strongly Dissgree Strongly
Disagree Nor Agree Agree
0 1t 2 3 4 § 6 7 & 9 10
The words and phrases used in the expert system are appropriate.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 t 2 3 4 S5 6 7 8 9 10
1 have to wait too fong for the expert system to respond to my inputs.
Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-12-

47.

49.

50.

The expert system’s graphic displays and tables, and hardcopy capabilities for printing displays,
are unacceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

The scheme used by the expert system to represent knowledge is acceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

(1} 1 2 3 4 5 6 7 8 9 10

When I consider, in total, (1) the expert system’s response time, (2) the amount of time to
accomplish the task with the expert system, (3) the quality of the expert system’s answers, and (4)
the quality of its reasons, I think the expert system is generally performing well.

Comaents
Very Nelther Very
Strongly Divagree sireghy
Disagree Nor Apree Aga

0 1 2 3 4 5 6 171 8 9 10

The _expert system scores well on overall usability, which includes its user interface, its match with
users’ background, and its match with the organization’s procedures and operations.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 i 2 3 4 5 6 7 8 9 10

-13

Name:

Time Started this Questionnaire:

Time Finished this Questionnaire:

Sequence:

Date:

. INSTRUCTIONS FOR SCORING THE EXPERT SYSTEM ON THE EVALUATION CRITERIA

We need your assistance in evaluating (or "scoring”) the expert system on the following criteria, which
are bold and in capital letters, that might be considered judgmental in nature:

1. The adequacy of the system’s Response Time Performance, in terms of the amount of
time the expert system takes to respond to the operator’s inputs and provide outputs.

2. The system’s Performance with respect to the overall Time to Accomplish the cxpert
system’s Task

3. Quality of the exper! system’s Answers.
4, Quality of Reasons given for answers.
5. Your Confidence in taking actions based on using the expert system.

6. How Easy it is To Use the expent system after you had been completely trained and
familiar with the system.

7. Acceptability of the Person-Machine Interaction Process, in terms of the different tasks
assigned 10 the operator and to the system.
. 8. Acceptability of the expert system’s task Results.

9. Acceptability of the system’s Scheme for Representing Knowledge.

10. Acceptability of the expert system’s Scope of Application for the expert system’s lask.

11, Acceptability of the system’s Presentation (or Trace) for Explaining the Reasons for its
answers.
12 Teancnprens~ 1 Lng EYDErE sVMEm.

13. Acceptability of 1he system’s Impact on the Work Style, Workload, Skills, and Training
of personnel performing the expert system’s task.

14, Acceptability of the system’s Impact on Organizational Procedures and Structures of the
organigarion

15 Accentability of the cxpert system s input-Output Capabilities--that is, all the system’s

displays except those tracing the reasoning process.

Feel free to refer back 1o these definttions when completing the questionnaire.

-1-

We would like you to use the following "0 to 100" scale to score the expert system on each evaluation
criterion:

100 ~—— Greatly Exceeds Performance Expectations
90 4
80 T
TACEE o
60 -
50 ~4— Fully Meets Performance Expectations
40 —
30 4
20 -
10 -1r-
0 — Fails 1o Meet Performance Expectations

The "50" point means that the expert system fully meets your performance expectations for the system
on the evaluaiion critcniun being considere: 7The "U" means the sysiem fails to meet your performance
expectations. The "100" means the sysitem not only fully meets your performance expectations, but
greatly exceeds them.

More generally, scores below "S0" mean that, in your judgment, the expert system is in some fashion
deficient on the criterion; scores above "S0" mean that you think the expert system is providing added
value on the criterion. The scale permits you to numerically score the level of deficiency or the level of
added value. For example, let’s consider evaluating the system on Response Time. If the expert system
meets your performance expectations for an acceptable waiting period between your inputs and the
system’s response (0 them, you would give it a score of "50." Let’s assume that you consider the expert
system’s response time deficient (i.e., less than "50”), but not a complete failure (i.c., greater than "0%).
Then, the question is, "What is its numerical level of deficiency between 0 and 507" If the deficiency is
very, very minor in your mind, then the score would be close to 50 (e.g., greater than or equal 1o 45,
but Jess than 50). On the other hand, if the deficiency is very, very great, but still not "0," then the
score would be close to 0 (e.g., iess than or equal to 5, but greater than 0). If you think the level of
deficiency is about halfway between meeting the expectation and failing it, you would give the system a
score of 25; if it is a quarier-of-the-way, you would score it 12.5, and so forth. In short, you can use the
bottom-half of the scale to numerically specify the expert system’s level of deficiency on the evalvation
criterion. In addition, of coursc, we need to know the reason(s) for your score; consequently, we will

providc you with space to tell us.

In a similar fashion, you can use the scale between "50° and "100" 10 nu.mnerically speciiy the level of
"added value* performance on the criterion. For example, if vou think the expert system barely exceeds
your performance expectations for Respoase Time, then it would reccive a score slightly above 50" If
it considerably exceeds your performance expectations but is not a "100," the expert system might receive
an "85," "90," "95," etc. If the degree of added value berefit provided by the expert system is about

halfway between meeting your performance expectations and greatly exceeding it, then you would score
it "75." If the added-value benefit is a quarter-of-the-way, you would give it a score of "62.5;" if it is
three-quarters, you would score it "87.5," and so forth. Again, it is important to tell us why the expert
system is providing added-value on the criterion; that is, give us the reasons for your score.

The pages that follow provide scoring sheets for evaluating the expert system on each criterion. Please
think carefully about each score, and the reasons for it. One way to help you do this is for you 1o first
carefully think about your performance expectations for the system on the criterion. What level of
performance do you consider acceptable (i.e., a score of "S0")? We have given you room 0 write your
performance expectations on the scoring sheet. We have also given you an opportunity to indicate (a)
whether you have previously expressed performance expectations for the criterion, and (b) whether you
have heard anyone else express performance expectations. Then, provide a numerical score, and the

reasons for it, in the space provided. If you can not (or do not want to) score the expert system on a

particular criterion, please write "no response” in the space provided.

i. RESPONSE TIME PERFORMANCE

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle “yes® or
"no.")
Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

-4-

2. PERFORMANCE REGARDING TIME TO ACCOMPLISH TASK

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 F. .0 Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes” or

"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please

comment.
Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCGHT

REASONS FOR SCORE:

5.

3. QUALITY OF ANSWERS

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expecilations

Have you previously expressed performance expectations for this criterion? (Circle “yes® or

"no".)

Yes

Have you previously heard anyone else express performance expectations? [f yes, please

comment.

Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

4. QUALITY OF REASONS

100 Greatly Exceeds Performance Expectations

S0 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)
Yes

Have you previously heard anyone clse express performance expectations? If yes, please
comment.
Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

. A, et e it 4 8

REASONS FOR SCORE:

S. YOUR CONFIDENCE

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle “yes" or

ﬂnol.)

Have you previously heard anyone else express performance expectations? If yes, please

comment.

Yes

Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

6. EASE OF USE

Greatly Exceeds Performance Expectations

Fully Meets Performance Expectations

i

o
b Ly
NEEREEREREE

Fails 10 Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

7. ACCEPTABILITY OF THE PERSON-MACHINE INTERACTION PROCESS
(In terms of the different tasks assigned to the operator and (o the system)

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails t0 Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes® or
"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

8. ACCEPTABILITY OF RESULTS

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes” or

"no".)

Have you previously heard anyone else express performance expectations? If yes, please

comment.

Yes

Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

———— et

REASONS FOR SCORE:

-i1-

9. ACCEPTABILITY OF SCHEME FOR REPRESENTING KNOWLEDGE

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

-12-

10. SCOPE OF APPLICATION

100 Greatly Exceeds Performance Expectlations

50 Fully Meets Performance Expectations

0 Fails 10 Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle “yes” or
"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes

WHAT ARE VOUR PRRFORMANCE EXPECTATIONS?

e s T Ty e T—— T sy o S it = = e o 4 e .

NUMERICAL SCORE:

REASONS FOR SCORE:

13-

11. ADEQUACY OF PRESENTATION/TRACE FOR EXPLAINING REASONS

100 - Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

-14-

12. TRANSPARENCY OF THE EXPERT SYSTEM

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes

YHAT ARF YOUR PERFORMANCE EXPECTATIONS?

N -

NUMERICAL SCORE:

REASONS FOR SCORE:

-45-

13. ACCEPTABILITY OF IMPACT ON OPERATOR’S WORK STYLE, WORKLOAD, SKILLS, AND TRAINING .

100 Greatly Exceeds Performance Expecuations
50 Fully Meets Performance Expectations

0 Fails t0 Meet Performance Expectations

. Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)
Yes No

» Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes No

. WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

. NUMERICAL SCORE:

. REASONS FOR SCORE:

-16-

-

*

14. ACCEPTABILITY OF IMPACT ON ORGANIZATIONAL PROCFDURES AND STRUCTURES

100 Greatly Exceeds Performance Expectations
50 Fully Meets Performance Expectations

0 Fails 10 Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle “yes” or
"no™.)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes

No

No

VAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

17-

15. ACCEPTABILITY OF INPUT-OUTPUT CAPABILITIES

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes™ or
"no”.)
Yes

Have you previously heard anyone else express performance expectations? If yes, pleasc
comment.

Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCC.RE:

-18-

-

. Now we would like you to evaluate the expert system’'s Overall Performence. When doing so, please
consider the expert system’s performance on the following four criteria iaken together.

. Response Time Performance

. Time to Accomplish the Task

. Quality of the Expert System’s Answers
. Quality of the Expert System’s Reasons.

Now piease turn the page and score the expert system on its Overall Performance. Feel free to look
back at your previous scores on the four criteria listed above before scoring the expert system on

Overall Performance.

-19-

16. OVERALL PERFORMANCE

100 Greatly Exceeds Performance Expectations

50 Fully Meets Performance Expectations

0 Fails to Mecet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes® or
lnoﬂ-)
Yes

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes

No

No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

. Now we would like you 1o evaluate the expert system on its Oversll Usability. When doing so, please
consider the expert system’s performance on the fo'lowing eleven criteria raken together:

. Your Confidence in the Expert System
. The Expert System'’s Ease of Use

. Acceptability of its Person-Machine Interaction Process
. Acceptability of its Results
. Acceptability of the Expert System's Scheme for Representing Knowledge

. The Expert System’s Scope of Application

) Adequacy of Presentation/Trace for Explaining Reasons

. Transparency of the Expert System

o Acceptability of its Impact on Operator’'s Work Style, Workload, Skills, and Training
. Acceptability of its Impact on Organizational Procedures and Structures

. Acceptability of the Expert System’s Input-Output Capabilities.

. Now please turn the page and score the expert system on its Overall Usability. Feel free to look back
at your previous scores on the eleven criteria listed above before scoring the experi system on Overall
Usability.

17. OVERALL USABILITY

Greatly Exceeds Performance Expectations

Fully Meets Performance Expectations

wi
(=]
I O

FrrrTrrerrid

Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes” or
"no".)
Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.
Yes No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

22

